論文の概要: The Role of GitHub Copilot on Software Development: A Perspective on Productivity, Security, Best Practices and Future Directions
- arxiv url: http://arxiv.org/abs/2502.13199v2
- Date: Fri, 02 May 2025 16:44:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 14:44:43.934296
- Title: The Role of GitHub Copilot on Software Development: A Perspective on Productivity, Security, Best Practices and Future Directions
- Title(参考訳): ソフトウェア開発におけるGitHubのコパイロットの役割: 生産性、セキュリティ、ベストプラクティス、今後の方向性
- Authors: Suresh Babu Nettur, Shanthi Karpurapu, Unnati Nettur, Likhit Sagar Gajja, Sravanthy Myneni, Akhil Dusi,
- Abstract要約: GitHub Copilotは、タスクの自動化とAI駆動コード生成による生産性向上によって、ソフトウェア開発を変革している。
私たちは、生産性とセキュリティに対するCopilotの影響についての洞察を合成するために、文献調査を実施しています。
Copilotはコーディングとプロトタイピングを加速するが、セキュリティ上の脆弱性や知的財産のリスクに対する懸念は持続する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: GitHub Copilot is transforming software development by automating tasks and boosting productivity through AI driven code generation. In this paper, we conduct a literature survey to synthesize insights on Copilot's impact on productivity and security. We review academic journal databases, industry reports, and official documentation to highlight key findings and challenges. While Copilot accelerates coding and prototyping, concerns over security vulnerabilities and intellectual property risks persist. Drawing from the literature, we provide a perspective on best practices and future directions for responsible AI adoption in software engineering, offering actionable insights for developers and organizations to integrate Copilot effectively while maintaining high standards of quality and security.
- Abstract(参考訳): GitHub Copilotは、タスクの自動化とAI駆動コード生成による生産性向上によって、ソフトウェア開発を変革している。
本稿では,コパイロットが生産性とセキュリティに与える影響について,文献調査を実施して考察する。
学術誌データベース、業界レポート、公式文書をレビューし、重要な発見と課題を取り上げます。
Copilotはコーディングとプロトタイピングを加速するが、セキュリティ上の脆弱性や知的財産のリスクに対する懸念は持続する。
文献から引用すると、私たちはソフトウェアエンジニアリングにおけるAI採用の責任を負うためのベストプラクティスと今後の方向性を視点として、開発者や組織がCopilotを効果的に統合し、品質とセキュリティの高水準を維持しながら、実践可能な洞察を提供しています。
関連論文リスト
- Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
本調査では,GUIエージェントの信頼性を5つの重要な次元で検証する。
敵攻撃に対する脆弱性、シーケンシャルな意思決定における障害モードのカスケードなど、大きな課題を特定します。
GUIエージェントが普及するにつれて、堅牢な安全基準と責任ある開発プラクティスを確立することが不可欠である。
論文 参考訳(メタデータ) (2025-03-30T13:26:00Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - SOK: Exploring Hallucinations and Security Risks in AI-Assisted Software Development with Insights for LLM Deployment [0.0]
GitHub Copilot、ChatGPT、Cursor AI、Codeium AIといった大規模言語モデル(LLM)は、コーディングの世界に革命をもたらした。
本稿では,AIを利用したコーディングツールのメリットとリスクを包括的に分析する。
論文 参考訳(メタデータ) (2025-01-31T06:00:27Z) - Balancing Innovation and Ethics in AI-Driven Software Development [0.0]
本稿では,GitHub CopilotやChatGPTといったAIツールをソフトウェア開発プロセスに統合することの倫理的意味を批判的に考察する。
コードオーナシップ、バイアス、説明責任、プライバシ、雇用市場への影響の可能性などについて検討する。
論文 参考訳(メタデータ) (2024-08-10T14:11:22Z) - Transforming Software Development: Evaluating the Efficiency and Challenges of GitHub Copilot in Real-World Projects [0.0]
GitHub CopilotはAIによるコーディングアシスタントだ。
本研究では、GitHub Copilotを使用する際の効率向上、改善の領域、新たな課題について評価する。
論文 参考訳(メタデータ) (2024-06-25T19:51:21Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Code Ownership in Open-Source AI Software Security [18.779538756226298]
コードオーナシップのメトリクスを使用して、5つの著名なオープンソースAIソフトウェアプロジェクトにおける潜在的な脆弱性との相関を調査します。
この結果は、ハイレベルなオーナシップ(マイナーなコントリビュータの数が限られている)と脆弱性の減少との間に肯定的な関係があることを示唆している。
これらの新しいコードオーナシップメトリクスによって、プロジェクトキュレーターや品質保証の専門家が現場プロジェクトを評価し、ベンチマークするのを助けるために、Pythonベースのコマンドラインアプリケーションを実装しました。
論文 参考訳(メタデータ) (2023-12-18T00:37:29Z) - A User-centered Security Evaluation of Copilot [12.350130201627186]
私たちはGitHubのCopilotを評価し、コードのセキュリティに関する長所と短所をよりよく理解しています。
Copilotへのアクセスは,難しい問題に対処する上で,よりセキュアなソリューションであることに気付きました。
論文 参考訳(メタデータ) (2023-08-12T14:49:46Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDevはチャットを利用したソフトウェア開発フレームワークで、特別なエージェントがコミュニケーション方法についてガイドされる。
これらのエージェントは、統一された言語ベースのコミュニケーションを通じて、設計、コーディング、テストフェーズに積極的に貢献する。
論文 参考訳(メタデータ) (2023-07-16T02:11:34Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
私たちは倫理的考慮事項を(アジャイル)ソフトウェア開発プロセスに組み込む必要があると論じています。
私たちは、すでに存在しており、確立されたアジャイルソフトウェア開発プロセスで倫理的な議論を実施する可能性を強調しました。
論文 参考訳(メタデータ) (2021-07-15T11:14:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。