論文の概要: 3D Gaussian Splatting aided Localization for Large and Complex Indoor-Environments
- arxiv url: http://arxiv.org/abs/2502.13803v1
- Date: Wed, 19 Feb 2025 15:12:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:59:08.390873
- Title: 3D Gaussian Splatting aided Localization for Large and Complex Indoor-Environments
- Title(参考訳): 大規模・複雑室内環境における3次元ガウス平滑化支援
- Authors: Vincent Ress, Jonas Meyer, Wei Zhang, David Skuddis, Uwe Soergel, Norbert Haala,
- Abstract要約: 本稿では,画像の追加により,確立された視覚的位置決め手法の精度と信頼性を大幅に向上する手法を提案する。
ランダムにサンプリングされたポーズで3DGSからレンダリングされた画像で参照データをリッチにすることで、幾何学に基づく視覚的ローカライゼーションとScene Coordinate Regression法の両方の性能が大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 3.255320158480672
- License:
- Abstract: The field of visual localization has been researched for several decades and has meanwhile found many practical applications. Despite the strong progress in this field, there are still challenging situations in which established methods fail. We present an approach to significantly improve the accuracy and reliability of established visual localization methods by adding rendered images. In detail, we first use a modern visual SLAM approach that provides a 3D Gaussian Splatting (3DGS) based map to create reference data. We demonstrate that enriching reference data with images rendered from 3DGS at randomly sampled poses significantly improves the performance of both geometry-based visual localization and Scene Coordinate Regression (SCR) methods. Through comprehensive evaluation in a large industrial environment, we analyze the performance impact of incorporating these additional rendered views.
- Abstract(参考訳): 視覚的ローカライゼーションの分野は数十年にわたって研究され、その間に多くの実用的な応用が発見されている。
この分野での強い進歩にもかかわらず、確立された手法が失敗する困難な状況がまだ残っている。
本稿では,画像の追加により,確立された視覚的位置決め手法の精度と信頼性を大幅に向上する手法を提案する。
より詳しくは、3次元ガウススプラッティング(3DGS)に基づく参照データ作成のためのマップを提供する、現代的な視界SLAMアプローチを最初に用いた。
ランダムにサンプリングされたポーズで3DGSからレンダリングされた画像で参照データをリッチにすることで、幾何学に基づく視覚的ローカライゼーションとSCR(Scene Coordinate Regression)手法の両方の性能が大幅に向上することを示した。
大規模産業環境での総合的な評価を通じて、これらの追加のレンダリングビューの導入による性能への影響を分析する。
関連論文リスト
- CrossView-GS: Cross-view Gaussian Splatting For Large-scale Scene Reconstruction [5.528874948395173]
3D Gaussian Splatting (3DGS) はシーンの表現と再構築に顕著な手法である。
両ブランチ融合に基づく大規模シーン再構成のための新しいクロスビューガウス分割法を提案する。
本手法は,最先端の手法と比較して,新規なビュー合成における優れた性能を実現する。
論文 参考訳(メタデータ) (2025-01-03T08:24:59Z) - NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGSは、スパースビュー画像が与えられたガウススプラッティングの拡散モデルである。
我々は3Dガウスを生成するためにトランスフォーマーネットワークを経由する新しい視点を利用する。
論文 参考訳(メタデータ) (2024-11-25T07:57:17Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
3D Gaussian Splatting (3DGS) は、空間的特徴を持つ3次元幾何学とシーンの外観の両方をコンパクトに符号化することができる。
モデルの空間的理解を改善するために,高密度キーポイント記述子を3DGSに蒸留することを提案する。
提案手法はNeRFMatchやPNeRFLocなど,最先端のニューラル・レンダー・ポース(NRP)法を超越した手法である。
論文 参考訳(メタデータ) (2024-09-24T23:18:32Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
本稿では,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
このフレームワークは3つのトレーニングビューでリアルタイムおよびフォトリアリスティックなビュー合成を可能にする。
FSGSは、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T09:30:02Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。