論文の概要: New Lower Bounds for Stochastic Non-Convex Optimization through Divergence Composition
- arxiv url: http://arxiv.org/abs/2502.14060v1
- Date: Wed, 19 Feb 2025 19:21:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:50.036793
- Title: New Lower Bounds for Stochastic Non-Convex Optimization through Divergence Composition
- Title(参考訳): 分岐合成による確率的非凸最適化のための新しい下界
- Authors: El Mehdi Saad, Weicheng Lee, Francesco Orabona,
- Abstract要約: L-凸性(QC)、擬似成長(SmoothQG)、制限不等式(RSI)などの非次元設定における一階最適化の基本的限界を示す。
- 参考スコア(独自算出の注目度): 11.530542389959347
- License:
- Abstract: We study fundamental limits of first-order stochastic optimization in a range of nonconvex settings, including L-smooth functions satisfying Quasar-Convexity (QC), Quadratic Growth (QG), and Restricted Secant Inequalities (RSI). While the convergence properties of standard algorithms are well-understood in deterministic regimes, significantly fewer results address the stochastic case, where only unbiased and noisy gradients are available. We establish new lower bounds on the number of noisy gradient queries to minimize these classes of functions, also showing that they are tight (up to a logarithmic factor) in all the relevant quantities characterizing each class. Our approach reformulates the optimization task as a function identification problem, leveraging divergence composition arguments to construct a challenging subclass that leads to sharp lower bounds. Furthermore, we present a specialized algorithm in the one-dimensional setting that achieves faster rates, suggesting that certain dimensional thresholds are intrinsic to the complexity of non-convex stochastic optimization.
- Abstract(参考訳): 擬似凸性(QC)、擬似成長(QG)、制限付き秘密不等式(RSI)を満たすL-smooth関数を含む,様々な非凸条件における一階確率最適化の基本的な限界について検討する。
標準アルゴリズムの収束特性は決定論的体系においてよく理解されているが、偏りのないノイズのある勾配しか得られない確率的ケースに対して、はるかに少ない結果が得られる。
これらの関数のクラスを最小化するために、雑音勾配クエリの個数に関する新しい下界を確立し、各クラスを特徴付けるすべての関連する量において、それらが(対数係数まで)厳密であることを示す。
提案手法は,関数識別問題として最適化タスクを再構成し,分散合成の引数を利用して,急激な下界につながる挑戦的なサブクラスを構築する。
さらに, より高速な1次元設定において, 非凸確率最適化の複雑さに固有の次元しきい値が存在することを示唆する特殊アルゴリズムを提案する。
関連論文リスト
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Inequality Constrained Stochastic Nonlinear Optimization via Active-Set
Sequential Quadratic Programming [17.9230793188835]
客観的・決定論的等式と不等式制約を用いた非線形最適化問題について検討する。
本稿では,有理関数として微分可能な拡張ラグランジアンを用いて,能動型逐次適応型プログラミングアルゴリズムを提案する。
アルゴリズムは、拡張ラグランジアンのパラメータを適応的に選択し、行探索を行い、ステップサイズを決定する。
論文 参考訳(メタデータ) (2021-09-23T17:12:17Z) - Stochastic Compositional Gradient Descent under Compositional
constraints [13.170519806372075]
目的関数と制約関数が凸であり,関数の合成として表される制約最適化問題について検討する。
この問題は、公平な分類/回帰とキューシステムの設計に生じる。
提案手法は最適かつ実現可能な解をほぼ確実に見つけることが保証されている。
論文 参考訳(メタデータ) (2020-12-17T05:38:37Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
定常点に収束する一般化外空間を提案する。
このアルゴリズムは一般の$p$ノルド空間だけでなく、一般の$p$次元ベクトル空間にも適用される。
論文 参考訳(メタデータ) (2020-10-31T21:35:42Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
本稿では,汎用凸あるいは非汎用機械目標の新しいモデルを提案する。
本稿では,各サブプロブレムの点レベルを徐々に緩和した制約を解くアルゴリズムを提案する。
我々は,新しい数値スケール問題の有効性を実証する。
論文 参考訳(メタデータ) (2020-10-23T05:24:05Z) - Tight Lower Complexity Bounds for Strongly Convex Finite-Sum
Optimization [21.435973899949285]
SAG, SAGA, SVRG, SARAHを含むランダム化漸進勾配法では, 有限和最適化の典型的な2つの場合において, 厳密に低い複雑性境界を導出する。
結果は,各成分関数が強凸で滑らかな場合のKatyushaやVRADAの上部複雑性と密に一致し,有限サム関数が強凸で成分関数が平均滑らかな場合のKatyushaXとSDCAの上部複雑性と密に一致した。
論文 参考訳(メタデータ) (2020-10-17T11:19:07Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。