論文の概要: Temporal Misalignment and Probabilistic Neurons
- arxiv url: http://arxiv.org/abs/2502.14487v1
- Date: Thu, 20 Feb 2025 12:09:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:30:06.286572
- Title: Temporal Misalignment and Probabilistic Neurons
- Title(参考訳): 時間的異常と確率ニューロン
- Authors: Velibor Bojković, Xiaofeng Wu, Bin Gu,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、ニューラルネットワーク(ANN)よりもエネルギー効率の良い代替手段を提供する
本研究では,ANN-SNN変換フレームワークにおいて,時間的ミスアライメント(temporal misalignment)と呼ばれる現象を同定する。
生物学的に可塑性二相確率性(TPP)刺激ニューロンを導入し,変換過程をさらに強化した。
- 参考スコア(独自算出の注目度): 17.73940693302129
- License:
- Abstract: Spiking Neural Networks (SNNs) offer a more energy-efficient alternative to Artificial Neural Networks (ANNs) by mimicking biological neural principles, establishing them as a promising approach to mitigate the increasing energy demands of large-scale neural models. However, fully harnessing the capabilities of SNNs remains challenging due to their discrete signal processing and temporal dynamics. ANN-SNN conversion has emerged as a practical approach, enabling SNNs to achieve competitive performance on complex machine learning tasks. In this work, we identify a phenomenon in the ANN-SNN conversion framework, termed temporal misalignment, in which random spike rearrangement across SNN layers leads to performance improvements. Based on this observation, we introduce biologically plausible two-phase probabilistic (TPP) spiking neurons, further enhancing the conversion process. We demonstrate the advantages of our proposed method both theoretically and empirically through comprehensive experiments on CIFAR-10/100, CIFAR10-DVS, and ImageNet across a variety of architectures, achieving state-of-the-art results.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークの原則を模倣することで、よりエネルギー効率のよいANN(Artificial Neural Networks)の代替手段を提供する。
しかし、SNNの能力を完全に活用することは、離散的な信号処理と時間的ダイナミクスのため、依然として困難である。
ANN-SNN変換は、複雑な機械学習タスクにおいてSNNが競争力を発揮するための実用的なアプローチとして登場した。
本研究では,SNN層間のランダムなスパイク再配置によって性能が向上する,時間的ミスアライメントと呼ばれる,ANN-SNN変換フレームワークにおける現象を同定する。
本研究は, 生物学的に可塑性二相確率性(TPP)スピキングニューロンを導入し, 変換過程をさらに強化する。
我々は,CIFAR-10/100, CIFAR10-DVS, ImageNetの様々なアーキテクチャにおける総合的な実験を通じて,提案手法の利点を理論的かつ実証的に示す。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - Converting High-Performance and Low-Latency SNNs through Explicit Modelling of Residual Error in ANNs [27.46147049872907]
スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率とニューロモルフィックチップの優れた効果のために関心を集めている。
ディープSNNの実装における主要なアプローチの1つは、ANN-SNN変換である。
本稿では,残差を付加雑音として明示的にモデル化した新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-26T14:50:46Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
我々は,AIタスクにおいて,ANNのアクティベーション値とSNNのスパイク時間とのほぼ完全なマッピングを実現することができることを示す。
この研究は、電力制約のあるエッジコンピューティングプラットフォームに超低消費電力のTTFSベースのSNNをデプロイする方法を舗装している。
論文 参考訳(メタデータ) (2023-10-23T14:26:16Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Multi-scale Evolutionary Neural Architecture Search for Deep Spiking
Neural Networks [7.271032282434803]
スパイキングニューラルネットワーク(SNN)のためのマルチスケール進化型ニューラルネットワーク探索(MSE-NAS)を提案する。
MSE-NASは脳にインスパイアされた間接的評価機能であるRepresentational Dissimilarity Matrices(RDMs)を介して、個々のニューロンの操作、複数の回路モチーフの自己組織化の統合、およびグローバルなモチーフ間の接続を進化させる
提案アルゴリズムは,静的データセットとニューロモルフィックデータセットのシミュレーションステップを短縮して,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2023-04-21T05:36:37Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - A Synapse-Threshold Synergistic Learning Approach for Spiking Neural
Networks [1.8556712517882232]
スパイキングニューラルネットワーク(SNN)は、さまざまなインテリジェントなシナリオにおいて優れた機能を示している。
本研究では,SNNにおけるシナプス重みとスパイク閾値を同時に学習する新しいシナジー学習手法を開発する。
論文 参考訳(メタデータ) (2022-06-10T06:41:36Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks [1.8515971640245998]
スパイクニューラルネットワーク(SNN)は、より生物学的に実行可能で、より強力なニューラルネットワークモデルとして研究されている。
本稿では、新規なサロゲート勾配と、チューナブルおよび適応性スピッキングニューロンの繰り返しネットワークがSNNの最先端を生み出す様子を示す。
論文 参考訳(メタデータ) (2021-03-12T10:27:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。