論文の概要: Confidence-Based Annotation Of Brain Tumours In Ultrasound
- arxiv url: http://arxiv.org/abs/2502.15484v1
- Date: Fri, 21 Feb 2025 14:16:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 17:06:45.484848
- Title: Confidence-Based Annotation Of Brain Tumours In Ultrasound
- Title(参考訳): 超音波による脳腫瘍の信頼に基づくアノテーション
- Authors: Alistair Weld, Luke Dixon, Alfie Roddan, Giulio Anichini, Sophie Camp, Stamatia Giannarou,
- Abstract要約: 超音波検査における脳腫瘍の個別分節診断の課題の検討
この辺縁関係の不確実性を組み込んだセグメンテーションプロトコルと手法を提案する。
スパース信頼度に基づくアノテーションの提案と評価を行った。
- 参考スコア(独自算出の注目度): 3.2304269154892538
- License:
- Abstract: Purpose: An investigation of the challenge of annotating discrete segmentations of brain tumours in ultrasound, with a focus on the issue of aleatoric uncertainty along the tumour margin, particularly for diffuse tumours. A segmentation protocol and method is proposed that incorporates this margin-related uncertainty while minimising the interobserver variance through reduced subjectivity, thereby diminishing annotator epistemic uncertainty. Approach: A sparse confidence method for annotation is proposed, based on a protocol designed using computer vision and radiology theory. Results: Output annotations using the proposed method are compared with the corresponding professional discrete annotation variance between the observers. A linear relationship was measured within the tumour margin region, with a Pearson correlation of 0.8. The downstream application was explored, comparing training using confidence annotations as soft labels with using the best discrete annotations as hard labels. In all evaluation folds, the Brier score was superior for the soft-label trained network. Conclusion: A formal framework was constructed to demonstrate the infeasibility of discrete annotation of brain tumours in B-mode ultrasound. Subsequently, a method for sparse confidence-based annotation is proposed and evaluated. Keywords: Brain tumours, ultrasound, confidence, annotation.
- Abstract(参考訳): 目的: 超音波検査において, 脳腫瘍の個々の区分に注釈を付けることの課題について検討し, 特にびまん性腫瘍については, 腫瘍縁部におけるアレラトニック不確実性の問題に焦点をあてた。
このマージン関係の不確実性を取り入れたセグメンテーションプロトコルと手法を提案する。
アプローチ: コンピュータビジョンと放射線学理論を用いて設計されたプロトコルに基づいて, アノテーションの疎信頼法を提案する。
結果:提案手法を用いた出力アノテーションを,観測者間でのプロの離散アノテーションの差異と比較した。
Pearsonの相関は0.8。
信頼性アノテーションをソフトラベルとして使用したトレーニングと、最高の離散アノテーションをハードラベルとして使用したトレーニングを比較して、ダウンストリームアプリケーションについて検討した。
すべての評価折り目において、ブライアスコアはソフトラベルトレーニングネットワークよりも優れていた。
結語:Bモード超音波における脳腫瘍の個別アノテーションの有効性を示す公式な枠組みを構築した。
その後,スパース信頼度に基づくアノテーションの提案と評価を行った。
キーワード:脳腫瘍、超音波、信頼、アノテーション。
関連論文リスト
- Evidential Calibrated Uncertainty-Guided Interactive Segmentation paradigm for Ultrasound Images [8.010602776500237]
Evidential Uncertainty-Guided Interactive (EUGIS) は、超音波画像セグメンテーションの明確な不確実性推定に基づくエンドツーエンドの対話的セグメンテーションパラダイムである。
提案手法は, 高度に訓練された放射線学者の対話行動のシミュレーションを効果的に行うことができ, サンプリング対象度を高めつつ, 必要なプロンプトやイテレーションの数を削減できる。
論文 参考訳(メタデータ) (2025-01-02T05:41:25Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Weakly Supervised Medical Image Segmentation With Soft Labels and Noise
Robust Loss [0.16490701092527607]
ディープラーニングモデルのトレーニングには、エキスパートラベル付きアノテーションを備えた大規模なデータセットが一般的に必要である。
不正確なセグメンテーションラベルで訓練されたディープラーニングモデルを用いた画像ベースの医療診断ツールは、誤診断や治療提案につながる可能性がある。
本研究の目的は, マルチラターアノテーションとMRIにおける病変の特徴の解剖学的知識に基づいて, 確率ラベルを生成する手法を開発し, 評価することである。
論文 参考訳(メタデータ) (2022-09-16T21:07:59Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Reducing Annotation Need in Self-Explanatory Models for Lung Nodule
Diagnosis [10.413504599164106]
肺結節診断のためのデータ/アノテーション効率の高い自己説明法であるcRedAnnoを提案する。
cRedAnnoは、自己教師付きコントラスト学習を導入することで、アノテーションの必要性を大幅に減らす。
学習空間の可視化は,悪性度と結節属性の相関が臨床知識と一致することを示している。
論文 参考訳(メタデータ) (2022-06-27T20:01:41Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
本稿では,セグメンテーションニューラルネットワークにおける不確実性定量化のための新しいベイズディープラーニングフレームワークを提案する。
我々は磁気共鳴イメージングとCTによる医用画像分割データについて検討した。
複数のベンチマークデータセットに対する実験により,提案するフレームワークは,最先端セグメンテーションモデルと比較して,ノイズや敵攻撃に対してより堅牢であることが示された。
論文 参考訳(メタデータ) (2021-11-10T22:46:05Z) - Improving Medical Image Classification with Label Noise Using
Dual-uncertainty Estimation [72.0276067144762]
医用画像における2種類のラベルノイズについて論じ,定義する。
医用画像分類作業中にこれら2つのラベルノイズを処理する不確実性推定に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-28T14:56:45Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。