論文の概要: Exact Recovery of Sparse Binary Vectors from Generalized Linear Measurements
- arxiv url: http://arxiv.org/abs/2502.16008v1
- Date: Fri, 21 Feb 2025 23:46:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:56:39.418541
- Title: Exact Recovery of Sparse Binary Vectors from Generalized Linear Measurements
- Title(参考訳): 一般化線形測定によるスパース二元ベクトルの厳密な回復
- Authors: Arya Mazumdar, Neha Sangwan,
- Abstract要約: 線形推定アルゴリズムを解析し,必要な測定値の数に基づいて情報理論の下限を示す。
雑音のある1ビットの量子化線形測定に対して、$O((k+sigma2)logn)$, $sigma2$はノイズ分散である。
また、ロジスティック回帰のための厳密なサンプル複雑性のキャラクタリゼーションも取得する。
- 参考スコア(独自算出の注目度): 15.85925794442426
- License:
- Abstract: We consider the problem of exact recovery of a $k$-sparse binary vector from generalized linear measurements (such as logistic regression). We analyze the linear estimation algorithm (Plan, Vershynin, Yudovina, 2017), and also show information theoretic lower bounds on the number of required measurements. As a consequence of our results, for noisy one bit quantized linear measurements ($\mathsf{1bCSbinary}$), we obtain a sample complexity of $O((k+\sigma^2)\log{n})$, where $\sigma^2$ is the noise variance. This is shown to be optimal due to the information theoretic lower bound. We also obtain tight sample complexity characterization for logistic regression. Since $\mathsf{1bCSbinary}$ is a strictly harder problem than noisy linear measurements ($\mathsf{SparseLinearReg}$) because of added quantization, the same sample complexity is achievable for $\mathsf{SparseLinearReg}$. While this sample complexity can be obtained via the popular lasso algorithm, linear estimation is computationally more efficient. Our lower bound holds for any set of measurements for $\mathsf{SparseLinearReg}$, (similar bound was known for Gaussian measurement matrices) and is closely matched by the maximum-likelihood upper bound. For $\mathsf{SparseLinearReg}$, it was conjectured in Gamarnik and Zadik, 2017 that there is a statistical-computational gap and the number of measurements should be at least $(2k+\sigma^2)\log{n}$ for efficient algorithms to exist. It is worth noting that our results imply that there is no such statistical-computational gap for $\mathsf{1bCSbinary}$ and logistic regression.
- Abstract(参考訳): 一般化線形測度(ロジスティック回帰など)から$k$sparse二進ベクトルを正確に回収する問題を考える。
線形推定アルゴリズム (Plan, Vershynin, Yudovina, 2017) を解析し, 必要な測定値の数に関する情報理論の下限を示す。
その結果、ノイズのある1ビット量子化線形測定(\mathsf{1bCSbinary}$)に対して、$O((k+\sigma^2)\log{n})$のサンプル複雑性を得る。
これは情報理論の下界により最適であることが示されている。
また、ロジスティック回帰のための厳密なサンプル複雑性のキャラクタリゼーションも取得する。
量子化を追加するため、$\mathsf{1bCSbinary}$はノイズリニア測定よりも難しい($\mathsf{SparseLinearReg}$)ので、$\mathsf{SparseLinearReg}$に対して同じサンプル複雑性が達成可能である。
このサンプルの複雑さは一般的なラッソアルゴリズムによって得ることができるが、線形推定はより効率的に計算できる。
我々の下界は、$\mathsf{SparseLinearReg}$(ガウス測度行列で同じ境界が知られていた)の任意の測度に対して成り立ち、上界の最大値に密接に一致する。
$\mathsf{SparseLinearReg}$に対して、2017年、ガマルニクとザディクでは統計計算のギャップがあり、効率的なアルゴリズムが存在するためには、測定値が少なくとも$(2k+\sigma^2)\log{n}$であるべきであると推測された。
我々の結果は、$\mathsf{1bCSbinary}$とロジスティック回帰にそのような統計計算的ギャップがないことを示していることに注意する必要がある。
関連論文リスト
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
以前の$mathRd上の分布に関する民間推定者は、次元性の呪いに苦しむ。
本稿では,サンプルの複雑さが次元依存性を改善したアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-01T17:59:53Z) - Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model [3.309767076331365]
閾値降下を用いた単一ニューロンモデル学習のための近似境界を導出する。
線形回帰問題も研究し、$sigma(mathbfx) = mathbfx$ となる。
論文 参考訳(メタデータ) (2024-09-05T16:59:56Z) - Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan [49.1574468325115]
ランク1テンソルを$otimes_i=1N mathbbRd$で完了する際のサンプルと計算複雑性を再考する。
本稿では,一対のランダム線形系上で,ガウス・ヨルダンに相当するアルゴリズムを許容する問題のキャラクタリゼーションを提案する。
論文 参考訳(メタデータ) (2024-08-10T04:26:19Z) - Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression [4.396860522241307]
疎線形回帰の効率的な学習アルゴリズムは, 負のスパイクを持つスパースPCA問題を解くのに有効であることを示す。
我々は,低次および統計的クエリの低い境界を減らしたスパース問題に対して補う。
論文 参考訳(メタデータ) (2024-02-21T19:55:01Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
この問題に対する効率的なSQアルゴリズムは、少なくとも$Omega(d1/2/(maxp, epsilon)2)$. のサンプル複雑性を必要とする。
我々の下限は、この1/epsilon$に対する二次的依存は、効率的なアルゴリズムに固有のものであることを示唆している。
論文 参考訳(メタデータ) (2023-07-13T18:59:28Z) - Statistical-Computational Tradeoffs in Mixed Sparse Linear Regression [20.00109111254507]
この問題は、$frackSNR2$-to-$frack2SNR2$statistic-to-computational gapである。
また,この問題が困難な狭い状況以外では,関連する混合回帰検出問題を解くための簡単なしきい値決定アルゴリズムも分析する。
論文 参考訳(メタデータ) (2023-03-03T18:03:49Z) - Sample Complexity Bounds for Learning High-dimensional Simplices in
Noisy Regimes [5.526935605535376]
ノイズの多いサンプルから単純さを学習するために、サンプルの複雑さが結びついているのがわかります。
我々は、$mathrmSNRgeOmegaleft(K1/2right)$ である限り、ノイズのないシステムのサンプルの複雑さは、ノイズのないケースのそれと同じ順序であることを示す。
論文 参考訳(メタデータ) (2022-09-09T23:35:25Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
本研究では,高次元スパース平均推定の問題点を,逆数外乱の$epsilon$-fractionの存在下で検討する。
我々のアルゴリズムは、サム・オブ・スクエア(Sum-of-Squares)ベースのアルゴリズムアプローチに従う。
論文 参考訳(メタデータ) (2022-06-07T16:49:54Z) - Hybrid Stochastic-Deterministic Minibatch Proximal Gradient:
Less-Than-Single-Pass Optimization with Nearly Optimal Generalization [83.80460802169999]
HSDMPGは、学習モデル上で過大なエラーの順序である$mathcalObig(1/sttnbig)$を達成可能であることを示す。
損失係数について、HSDMPGは学習モデル上で過大なエラーの順序である$mathcalObig(1/sttnbig)$を達成できることを示す。
論文 参考訳(メタデータ) (2020-09-18T02:18:44Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。