PMAT: Optimizing Action Generation Order in Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2502.16496v1
- Date: Sun, 23 Feb 2025 08:30:14 GMT
- Title: PMAT: Optimizing Action Generation Order in Multi-Agent Reinforcement Learning
- Authors: Kun Hu, Muning Wen, Xihuai Wang, Shao Zhang, Yiwei Shi, Minne Li, Minglong Li, Ying Wen,
- Abstract summary: Action Generation with Plackett-Luce Sampling (AGPS) is a novel mechanism for agent decision order optimization.<n>We propose the Prioritized Multi-Agent Transformer (PMAT), a sequential decision-making MARL algorithm with decision order optimization.<n>Experiments on benchmarks including StarCraft II Multi-Agent Challenge, Google Research Football, and Multi-Agent MuJoCo show that PMAT outperforms state-of-the-art algorithms.
- Score: 16.523999372817435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent reinforcement learning (MARL) faces challenges in coordinating agents due to complex interdependencies within multi-agent systems. Most MARL algorithms use the simultaneous decision-making paradigm but ignore the action-level dependencies among agents, which reduces coordination efficiency. In contrast, the sequential decision-making paradigm provides finer-grained supervision for agent decision order, presenting the potential for handling dependencies via better decision order management. However, determining the optimal decision order remains a challenge. In this paper, we introduce Action Generation with Plackett-Luce Sampling (AGPS), a novel mechanism for agent decision order optimization. We model the order determination task as a Plackett-Luce sampling process to address issues such as ranking instability and vanishing gradient during the network training process. AGPS realizes credit-based decision order determination by establishing a bridge between the significance of agents' local observations and their decision credits, thus facilitating order optimization and dependency management. Integrating AGPS with the Multi-Agent Transformer, we propose the Prioritized Multi-Agent Transformer (PMAT), a sequential decision-making MARL algorithm with decision order optimization. Experiments on benchmarks including StarCraft II Multi-Agent Challenge, Google Research Football, and Multi-Agent MuJoCo show that PMAT outperforms state-of-the-art algorithms, greatly enhancing coordination efficiency.
Related papers
- Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.
Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.
We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Hypernetwork-based approach for optimal composition design in partially controlled multi-agent systems [5.860363407227059]
Partially Controlled Multi-Agent Systems (PCMAS) are comprised of controllable agents, managed by a system designer, and uncontrollable agents, operating autonomously.<n>This study addresses an optimal composition design problem in PCMAS, which involves the system designer's problem, determining the optimal number and policies of controllable agents, and the uncontrollable agents' problem.<n>We propose a novel hypernetwork-based framework that jointly optimize the system's composition and agent policies.
arXiv Detail & Related papers (2025-02-18T07:35:24Z) - Learning to Solve the Min-Max Mixed-Shelves Picker-Routing Problem via Hierarchical and Parallel Decoding [0.3867363075280544]
The Mixed-Shelves Picker Routing Problem (MSPRP) is a fundamental challenge in logistics, where pickers must navigate a mixed-shelves environment to retrieve SKUs efficiently.
We propose a novel hierarchical and parallel decoding approach for solving the min-max variant of the MSPRP via multi-agent reinforcement learning.
Experiments show state-of-the-art performance in both solution quality and inference speed, particularly for large-scale and out-of-distribution instances.
arXiv Detail & Related papers (2025-02-14T15:42:30Z) - Exploring Multi-Agent Reinforcement Learning for Unrelated Parallel Machine Scheduling [2.3034630097498883]
The study introduces the Reinforcement Learning environment and conducts empirical analyses.
The experiments employ various deep neural network policies for single- and Multi-Agent approaches.
While Single-Agent algorithms perform adequately in reduced scenarios, Multi-Agent approaches reveal challenges in cooperative learning but a scalable capacity.
arXiv Detail & Related papers (2024-11-12T08:27:27Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.
In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.
Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization [17.392822956504848]
We propose a reinforcement learning framework designed to construct high-quality solutions for multi-agent tasks efficiently.<n>PARCO integrates three key components: (1) transformer-based communication layers to enable effective agent collaboration during parallel solution construction, (2) a multiple pointer mechanism for low-latency, parallel agent decision-making, and (3) priority-based conflict handlers to resolve decision conflicts via learned priorities.<n>We evaluate PARCO in multi-agent vehicle routing and scheduling problems where our approach outperforms state-of-the-art learning methods and demonstrates strong generalization ability and remarkable computational efficiency.
arXiv Detail & Related papers (2024-09-05T17:49:18Z) - Decentralised Q-Learning for Multi-Agent Markov Decision Processes with
a Satisfiability Criterion [0.0]
We propose a reinforcement learning algorithm to solve a multi-agent Markov decision process (MMDP)
The goal is to lower the time average cost of each agent to below a pre-specified agent-specific bound.
arXiv Detail & Related papers (2023-11-21T13:56:44Z) - Approximate Linear Programming for Decentralized Policy Iteration in Cooperative Multi-agent Markov Decision Processes [5.842054972839244]
We consider a cooperative multi-agent Markov decision process involving m agents.
In the policy iteration process of multi-agent setup, the number of actions grows exponentially with the number of agents.
We propose approximate decentralized policy iteration algorithms using approximate linear programming with function approximation.
arXiv Detail & Related papers (2023-11-20T14:14:13Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
We propose automatically selecting a team of agents from candidates to collaborate in a dynamic communication structure toward different tasks and domains.
Specifically, we build a framework named Dynamic LLM-Powered Agent Network ($textDyLAN$) for LLM-powered agent collaboration.
We demonstrate that DyLAN outperforms strong baselines in code generation, decision-making, general reasoning, and arithmetic reasoning tasks with moderate computational cost.
arXiv Detail & Related papers (2023-10-03T16:05:48Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - ACE: Cooperative Multi-agent Q-learning with Bidirectional
Action-Dependency [65.28061634546577]
Multi-agent reinforcement learning (MARL) suffers from the non-stationarity problem.
In this paper, we propose bidirectional action-dependent Q-learning (ACE)
ACE outperforms the state-of-the-art algorithms on Google Research Football and StarCraft Multi-Agent Challenge.
arXiv Detail & Related papers (2022-11-29T10:22:55Z) - Macro-Action-Based Multi-Agent/Robot Deep Reinforcement Learning under
Partial Observability [4.111899441919164]
State-of-the-art multi-agent reinforcement learning (MARL) methods have provided promising solutions to a variety of complex problems.
We first propose a group of value-based RL approaches for MacDec-POMDPs.
We formulate a set of macro-action-based policy gradient algorithms under the three training paradigms.
arXiv Detail & Related papers (2022-09-20T21:13:51Z) - Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement
Learning with Actor Rectification [74.10976684469435]
offline reinforcement learning (RL) algorithms can be transferred to multi-agent settings directly.
We propose a simple yet effective method, Offline Multi-Agent RL with Actor Rectification (OMAR), to tackle this critical challenge.
OMAR significantly outperforms strong baselines with state-of-the-art performance in multi-agent continuous control benchmarks.
arXiv Detail & Related papers (2021-11-22T13:27:42Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
We propose an adaptive training algorithm to develop effective collaboration between agents with ToM.
We evaluate our algorithms with two games, where our algorithm surpasses all previous decentralized execution algorithms without modeling ToM.
arXiv Detail & Related papers (2021-09-30T23:28:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.