論文の概要: Laplace-Beltrami Operator for Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2502.17531v1
- Date: Mon, 24 Feb 2025 14:29:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:19:17.636160
- Title: Laplace-Beltrami Operator for Gaussian Splatting
- Title(参考訳): ガウス平滑化のためのラプラス・ベルトラミ演算子
- Authors: Hongyu Zhou, Zorah Lähner,
- Abstract要約: 幾何学処理において広く使われているツールであるLaplace-Beltrami演算子をガウススプラッティング上で直接計算するための定式化を提案する。
概念的にはラプラシアンの点雲と似ているが、ガウススティングセンターで符号化された点雲の精度は優れている。
- 参考スコア(独自算出の注目度): 21.11860976518113
- License:
- Abstract: With the rising popularity of 3D Gaussian splatting and the expanse of applications from rendering to 3D reconstruction, there comes also a need for geometry processing applications directly on this new representation. While considering the centers of Gaussians as a point cloud or meshing them is an option that allows to apply existing algorithms, this might ignore information present in the data or be unnecessarily expensive. Additionally, Gaussian splatting tends to contain a large number of outliers which do not affect the rendering quality but need to be handled correctly in order not to produce noisy results in geometry processing applications. In this work, we propose a formulation to compute the Laplace-Beltrami operator, a widely used tool in geometry processing, directly on Gaussian splatting using the Mahalanobis distance. While conceptually similar to a point cloud Laplacian, our experiments show superior accuracy on the point clouds encoded in the Gaussian splatting centers and, additionally, the operator can be used to evaluate the quality of the output during optimization.
- Abstract(参考訳): 3Dガウススプラッティングの人気が高まり、レンダリングから3D再構成に至るまでのアプリケーションの拡大に伴い、この新しい表現に直接幾何学処理アプリケーションを適用する必要もある。
ガウシアンの中心をポイントクラウドやメッシュ化として考えることは、既存のアルゴリズムを適用するオプションであるが、これはデータに存在する情報を無視するか、必要以上に高価である。
さらに、ガウススプラッティングは、レンダリング品質に影響しないが、幾何処理アプリケーションでノイズの多い結果を生成するために正しく処理する必要がある、多数の外れ値を含む傾向にある。
本研究では,Mahalanobis 距離を用いたガウススプラッティングから直接,幾何学処理において広く用いられているラプラス・ベルトラミ作用素を計算するための定式化を提案する。
概念的にはラプラシア点雲と似ているが、ガウススプラッティングセンターで符号化された点雲では精度が優れており、演算子を用いて最適化時の出力の質を評価することができる。
関連論文リスト
- FeatureGS: Eigenvalue-Feature Optimization in 3D Gaussian Splatting for Geometrically Accurate and Artifact-Reduced Reconstruction [1.474723404975345]
3Dガウシアン3DGSは3Dガウシアンを用いた3Dシーン再構築の強力なアプローチとして登場した。
本稿では,固有値由来の3次元形状特徴に基づく幾何学的損失項を3DGSの最適化プロセスに組み込む。
論文 参考訳(メタデータ) (2025-01-29T13:40:25Z) - GaussianFormer-2: Probabilistic Gaussian Superposition for Efficient 3D Occupancy Prediction [55.60972844777044]
3Dセマンティック占有予測は、堅牢な視覚中心の自律運転において重要な課題である。
既存のほとんどの手法は、密度の高いグリッドベースのシーン表現を利用しており、運転シーンの空間的空間性を見渡している。
本稿では,各ガウス分布をその周辺領域の確率分布として解釈する確率論的ガウス重ね合わせモデルを提案する。
論文 参考訳(メタデータ) (2024-12-05T17:59:58Z) - ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining [104.34751911174196]
ShapeNetとModelNetを用いた大規模3DGSデータセットを構築した。
データセットのShapeSplatは、87のユニークなカテゴリから65Kのオブジェクトで構成されています。
textbftextitGaussian-MAEを導入し、ガウスパラメータからの表現学習の独特な利点を強調した。
論文 参考訳(メタデータ) (2024-08-20T14:49:14Z) - Trim 3D Gaussian Splatting for Accurate Geometry Representation [72.00970038074493]
画像から正確な3次元形状を復元するためにTrim 3D Gaussian Splatting (TrimGS)を導入する。
実験および理論的解析により、比較的小さなガウススケールが複雑な詳細を表現・最適化する非無視因子であることが判明した。
元の3DGSと最先端の2DGSと組み合わせると、TrimGSは一貫してより正確な幾何学と高い知覚品質が得られる。
論文 参考訳(メタデータ) (2024-06-11T17:34:46Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - SA-GS: Semantic-Aware Gaussian Splatting for Large Scene Reconstruction with Geometry Constrain [43.80789481557894]
セマンティック・アウェアな3Dガウス・スプラットを用いた細粒度3次元幾何再構成のためのSA-GSという新しい手法を提案する。
我々はSAMやDINOのような大きな視覚モデルに格納された事前情報を利用してセマンティックマスクを生成する。
我々は,新しい確率密度に基づく抽出法を用いて点雲を抽出し,ガウススプラッツを下流タスクに不可欠な点雲に変換する。
論文 参考訳(メタデータ) (2024-05-27T08:15:10Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
Compressed Gaussian Splatting (CompGS) という,効率的な3次元シーン表現を提案する。
我々は少数のアンカープリミティブを予測に利用し、プリミティブの大多数を非常にコンパクトな残留形にカプセル化することができる。
実験の結果,提案手法は既存の手法よりも優れており,モデル精度とレンダリング品質を損なうことなく,3次元シーン表現のコンパクト性に優れていた。
論文 参考訳(メタデータ) (2024-04-15T04:50:39Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
本稿では,3次元ガウススプラッティングから高精細な表面を復元する神経暗黙的表面再構成パイプラインを提案する。
3Dガウススプラッティングの利点は、詳細な構造を持つ高密度の点雲を生成することができることである。
我々は3次元ガウスを極端に薄くすることで、表面に近い中心を引っ張るスケール正則化器を導入する。
論文 参考訳(メタデータ) (2023-12-01T07:04:47Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。