論文の概要: Sample-efficient diffusion-based control of complex nonlinear systems
- arxiv url: http://arxiv.org/abs/2502.17893v1
- Date: Tue, 25 Feb 2025 06:30:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:18:59.653532
- Title: Sample-efficient diffusion-based control of complex nonlinear systems
- Title(参考訳): 複素非線形系のサンプル効率拡散に基づく制御
- Authors: Hongyi Chen, Jingtao Ding, Jianhai Shu, Xinchun Yu, Xiaojun Liang, Yong Li, Xiao-Ping Zhang,
- Abstract要約: SEDCは、高次元状態-作用空間、非線形システムダイナミクス、最適でないトレーニングデータと準最適制御ソリューションのギャップに対処する、新しい拡散ベースの制御フレームワークである。
提案手法は, 複素非線形系の試料効率制御における顕著な進歩を示す。
- 参考スコア(独自算出の注目度): 12.75120974078924
- License:
- Abstract: Complex nonlinear system control faces challenges in achieving sample-efficient, reliable performance. While diffusion-based methods have demonstrated advantages over classical and reinforcement learning approaches in long-term control performance, they are limited by sample efficiency. This paper presents SEDC (Sample-Efficient Diffusion-based Control), a novel diffusion-based control framework addressing three core challenges: high-dimensional state-action spaces, nonlinear system dynamics, and the gap between non-optimal training data and near-optimal control solutions. Through three innovations - Decoupled State Diffusion, Dual-Mode Decomposition, and Guided Self-finetuning - SEDC achieves 39.5\%-49.4\% better control accuracy than baselines while using only 10\% of the training samples, as validated across three complex nonlinear dynamic systems. Our approach represents a significant advancement in sample-efficient control of complex nonlinear systems. The implementation of the code can be found at https://anonymous.4open.science/r/DIFOCON-C019.
- Abstract(参考訳): 複雑な非線形システム制御は、サンプル効率で信頼性の高い性能を達成する上で困難に直面している。
拡散法は, 長期制御性能において古典的, 強化的学習法に勝るものの, サンプル効率によって制限されている。
本稿では,高次元状態作用空間,非線形システムダイナミクス,非最適トレーニングデータと準最適制御ソリューションのギャップといった3つの課題に対処する,新しい拡散型制御フレームワークであるSEDCを提案する。
Decoupled State Diffusion, Dual-Mode Decomposition, Guided Self-finetuning – SEDCは3つの複雑な非線形力学系で検証されるように、トレーニングサンプルの10%しか使用せず、ベースラインよりも39.5\%-49.4\%の制御精度を達成している。
提案手法は, 複素非線形系の試料効率制御における顕著な進歩を示す。
コードの実装はhttps://anonymous.4open.science/r/DIFOCON-C019で見ることができる。
関連論文リスト
- Latent feedback control of distributed systems in multiple scenarios through deep learning-based reduced order models [3.5161229331588095]
高次元分散システムの継続的な監視とリアルタイム制御は、望まれる物理的な振る舞いを保証するためにアプリケーションに不可欠である。
完全順序モデルに依存する従来のフィードバック制御設計は、制御計算の遅延のため、これらの要求を満たすことができない。
非線形非侵襲的深層学習に基づく還元順序モデル(DL-ROM)により強化されたリアルタイム閉ループ制御戦略を提案する。
論文 参考訳(メタデータ) (2024-12-13T08:04:21Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - CL-DiffPhyCon: Closed-loop Diffusion Control of Complex Physical Systems [10.167080282182972]
物理系制御のための効率的な閉ループ拡散法(CL-DiffPhyCon)を提案する。
CL-DiffPhyConは、異なる物理時間ステップに非同期なdenoisingフレームワークを使用することで、システムからのリアルタイムフィードバックに条件付けられた制御信号を生成する。
CL-DiffPhyConを1次元バーガースの方程式制御と2次元非圧縮性流体制御の2つのタスクで評価した。
論文 参考訳(メタデータ) (2024-07-31T14:54:29Z) - Random Features Approximation for Control-Affine Systems [6.067043299145924]
制御アフィン構造をキャプチャする非線形特徴表現の2つの新しいクラスを提案する。
提案手法はランダムな特徴(RF)近似を用いて,より少ない計算コストでカーネル手法の表現性を継承する。
論文 参考訳(メタデータ) (2024-06-10T17:54:57Z) - Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
クローズドループ安定性保証による性能ブースティング問題に対処する。
本手法は,安定な非線形システムのための性能ブースティング制御器のニューラルネットワーククラスを任意に学習することを可能にする。
論文 参考訳(メタデータ) (2024-05-01T21:11:29Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Comparative analysis of machine learning methods for active flow control [60.53767050487434]
遺伝的プログラミング(GP)と強化学習(RL)はフロー制御において人気を集めている。
この研究は2つの比較分析を行い、地球規模の最適化手法に対して最も代表的なアルゴリズムのいくつかをベンチマークする。
論文 参考訳(メタデータ) (2022-02-23T18:11:19Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Reinforcement Learning Control of Robotic Knee with Human in the Loop by
Flexible Policy Iteration [17.365135977882215]
本研究は,ポリシーアルゴリズムに革新的な特徴を導入することで,重要な空白を埋める。
本稿では,近似値関数の収束,解の最適性,システムの安定性などのシステムレベルの性能を示す。
論文 参考訳(メタデータ) (2020-06-16T09:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。