論文の概要: XGBoost-Based Prediction of ICU Mortality in Sepsis-Associated Acute Kidney Injury Patients Using MIMIC-IV Database with Validation from eICU Database
- arxiv url: http://arxiv.org/abs/2502.17978v1
- Date: Tue, 25 Feb 2025 08:49:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:47.143389
- Title: XGBoost-Based Prediction of ICU Mortality in Sepsis-Associated Acute Kidney Injury Patients Using MIMIC-IV Database with Validation from eICU Database
- Title(参考訳): eICUデータベースを用いたMIMIC-IVデータベースを用いた敗血症関連急性腎損傷患者のICU死亡率のXGBoostによる予測
- Authors: Shuheng Chen, Junyi Fan, Elham Pishgar, Kamiar Alaei, Greg Placencia, Maryam Pishgar,
- Abstract要約: Sepsis-Associated acute Kidney Injury (SA-AKI) は集中治療において高い死亡率をもたらす。
本研究では,SA-AKI患者のICU死亡率を予測する機械学習モデルを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Background: Sepsis-Associated Acute Kidney Injury (SA-AKI) leads to high mortality in intensive care. This study develops machine learning models using the Medical Information Mart for Intensive Care IV (MIMIC-IV) database to predict Intensive Care Unit (ICU) mortality in SA-AKI patients. External validation is conducted using the eICU Collaborative Research Database. Methods: For 9,474 identified SA-AKI patients in MIMIC-IV, key features like lab results, vital signs, and comorbidities were selected using Variance Inflation Factor (VIF), Recursive Feature Elimination (RFE), and expert input, narrowing to 24 predictive variables. An Extreme Gradient Boosting (XGBoost) model was built for in-hospital mortality prediction, with hyperparameters optimized using GridSearch. Model interpretability was enhanced with SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). External validation was conducted using the eICU database. Results: The proposed XGBoost model achieved an internal Area Under the Receiver Operating Characteristic curve (AUROC) of 0.878 (95% Confidence Interval: 0.859-0.897). SHAP identified Sequential Organ Failure Assessment (SOFA), serum lactate, and respiratory rate as key mortality predictors. LIME highlighted serum lactate, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, total urine output, and serum calcium as critical features. Conclusions: The integration of advanced techniques with the XGBoost algorithm yielded a highly accurate and interpretable model for predicting SA-AKI mortality across diverse populations. It supports early identification of high-risk patients, enhancing clinical decision-making in intensive care. Future work needs to focus on enhancing adaptability, versatility, and real-world applications.
- Abstract(参考訳): 背景: Sepsis-Associated acute Kidney Injury (SA-AKI) は集中治療の死亡率が高い。
本研究では,SA-AKI患者のICU死亡率を予測するために,MIMIC-IVデータベースを用いた機械学習モデルを開発した。
外部検証は eICU Collaborative Research Database を用いて行う。
方法: MIMIC-IVのSA-AKI患者9,474名に対して, 変動インフレーション因子 (VIF) , 再帰的特徴除去 (RFE) , 専門家入力 (RFE) を用いて, 実験結果, バイタルサイン, コーディビディティなどの重要な特徴を抽出した。
GridSearchを使ってハイパーパラメータを最適化し,病院内死亡予測のために,エクストリームグラディエントブースティング(XGBoost)モデルを構築した。
モデル解釈性は、SHAP(SHapley Additive exPlanations)とLIME(Local Interpretable Model-Agnostic Explanations)によって強化された。
eICUデータベースを用いて外部検証を行った。
結果:提案したXGBoostモデルでは,受信器動作特性曲線(AUROC)が0.878(95%信頼区間:0.859-0.897)となった。
SHAPは, 経時的臓器不全評価(SOFA), 乳酸血清, 呼吸速度を重要な死亡予測因子として同定した。
LIMEは, 乳酸血清, 急性生理および慢性健康評価II(APACHE II)スコア, 総尿出力, 血清カルシウムを重要成分として強調した。
結論: XGBoostアルゴリズムと先進的手法の統合により,SA-AKI死亡率の予測に極めて正確かつ解釈可能なモデルが得られた。
高リスク患者の早期発見を支援し、集中治療における臨床的意思決定を強化する。
今後の作業は、適応性、汎用性、および現実世界のアプリケーションを改善することに集中する必要があります。
関連論文リスト
- Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
肝細胞癌(HCC)は、がん関連死亡の原因である。
HCCにおける肺転移の予測モデルは、範囲と臨床応用性に限られている。
本研究では,Surveillance, Epidemiology, End Results (SEER)データベースのデータを用いて,エンドツーエンドの機械学習パイプラインの開発と検証を行う。
論文 参考訳(メタデータ) (2025-01-20T20:06:31Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
外傷性脳損傷(TBI)患者の呼吸器関連肺炎(VAP)は重大な死亡リスクをもたらす。
TBI患者のVAPのタイムリーな検出と予後は、患者の予後を改善し、医療資源の負担を軽減するために重要である。
我々はMIMIC-IIIデータベースを用いて6つの機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-08-02T09:44:18Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - An empirical study of using radiology reports and images to improve ICU
mortality prediction [21.99553011832319]
ICU死亡率を予測するために,多モードデータを用いたディープラーニングに基づく生存予測モデルを構築した。
医療情報マートをMIMIC-IV(MIMIC-IV)データセットを用いて提案モデルの評価を行った。
論文 参考訳(メタデータ) (2023-06-20T15:43:28Z) - XMI-ICU: Explainable Machine Learning Model for Pseudo-Dynamic
Prediction of Mortality in the ICU for Heart Attack Patients [3.5475382876263915]
心臓発作は、米国と世界の死亡率に最も貢献している1つである。
我々は,ICUにおける死亡予測のための新しい擬似力学機械学習フレームワークを開発し,解釈可能性と臨床リスク分析を行った。
論文 参考訳(メタデータ) (2023-05-10T12:53:18Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。