ColorDynamic: Generalizable, Scalable, Real-time, End-to-end Local Planner for Unstructured and Dynamic Environments
- URL: http://arxiv.org/abs/2502.19892v1
- Date: Thu, 27 Feb 2025 09:01:11 GMT
- Title: ColorDynamic: Generalizable, Scalable, Real-time, End-to-end Local Planner for Unstructured and Dynamic Environments
- Authors: Jinghao Xin, Zhichao Liang, Zihuan Zhang, Peng Wang, Ning Li,
- Abstract summary: This study proposes the ColorDynamic framework to address robotic local planning problems.<n>An end-to-end Deep Reinforcement Learning (DRL) formulation is established, which maps raw sensor data directly to control commands.<n>A novel network, Transqer, is introduced, which enables online DRL learning from temporal transitions.
- Score: 4.7206814223703475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement Learning (DRL) has demonstrated potential in addressing robotic local planning problems, yet its efficacy remains constrained in highly unstructured and dynamic environments. To address these challenges, this study proposes the ColorDynamic framework. First, an end-to-end DRL formulation is established, which maps raw sensor data directly to control commands, thereby ensuring compatibility with unstructured environments. Under this formulation, a novel network, Transqer, is introduced. The Transqer enables online DRL learning from temporal transitions, substantially enhancing decision-making in dynamic scenarios. To facilitate scalable training of Transqer with diverse data, an efficient simulation platform E-Sparrow, along with a data augmentation technique leveraging symmetric invariance, are developed. Comparative evaluations against state-of-the-art methods, alongside assessments of generalizability, scalability, and real-time performance, were conducted to validate the effectiveness of ColorDynamic. Results indicate that our approach achieves a success rate exceeding 90% while exhibiting real-time capacity (1.2-1.3 ms per planning). Additionally, ablation studies were performed to corroborate the contributions of individual components. Building on this, the OkayPlan-ColorDynamic (OPCD) navigation system is presented, with simulated and real-world experiments demonstrating its superiority and applicability in complex scenarios. The codebase and experimental demonstrations have been open-sourced on our website to facilitate reproducibility and further research.
Related papers
- Latent Diffusion Planning for Imitation Learning [78.56207566743154]
Latent Diffusion Planning (LDP) is a modular approach consisting of a planner and inverse dynamics model.
By separating planning from action prediction, LDP can benefit from the denser supervision signals of suboptimal and action-free data.
On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art imitation learning approaches.
arXiv Detail & Related papers (2025-04-23T17:53:34Z) - Counterfactual experience augmented off-policy reinforcement learning [9.77739016575541]
CEA builds efficient inference model and enhances representativeness of learning data.
Uses variational autoencoders to model the dynamic patterns of state transitions.
Builds a complete counterfactual experience to alleviate the out-of-distribution problem of the learning data.
arXiv Detail & Related papers (2025-03-18T02:32:50Z) - Intrinsic Dynamics-Driven Generalizable Scene Representations for Vision-Oriented Decision-Making Applications [0.21051221444478305]
How to improve the ability of scene representation is a key issue in vision-oriented decision-making applications.
We propose an intrinsic dynamics-driven representation learning method with sequence models in visual reinforcement learning.
arXiv Detail & Related papers (2024-05-30T06:31:03Z) - Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep Reinforcement Learning (CDRL) Approach [11.770137653756697]
Integrated sensing and communication (ISAC) technology is essential for supporting vehicular networks.
The communication channel in this scenario exhibits time variations, and the potential targets may move rapidly, resulting in double dynamics.
We propose using constrained deep reinforcement learning to facilitate dynamic updates to the ISAC precoder.
arXiv Detail & Related papers (2024-05-23T09:19:14Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Improving GANs with A Dynamic Discriminator [106.54552336711997]
We argue that a discriminator with an on-the-fly adjustment on its capacity can better accommodate such a time-varying task.
A comprehensive empirical study confirms that the proposed training strategy, termed as DynamicD, improves the synthesis performance without incurring any additional cost or training objectives.
arXiv Detail & Related papers (2022-09-20T17:57:33Z) - Unseen Object Instance Segmentation with Fully Test-time RGB-D
Embeddings Adaptation [14.258456366985444]
Recently, a popular solution is leveraging RGB-D features of large-scale synthetic data and applying the model to unseen real-world scenarios.
We re-emphasize the adaptation process across Sim2Real domains in this paper.
We propose a framework to conduct the Fully Test-time RGB-D Embeddings Adaptation (FTEA) based on parameters of the BatchNorm layer.
arXiv Detail & Related papers (2022-04-21T02:35:20Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects.
A benchmark contains over 17,000 action trajectories with six types of plush toys and 78 variants.
Our model achieves the best performance in geometry, correspondence, and dynamics predictions.
arXiv Detail & Related papers (2022-03-14T04:56:55Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Phase Transition Adaptation [14.034816857287044]
We propose an extension of the original approach, a local unsupervised learning mechanism we call Phase Transition Adaptation.
We show experimentally that our approach consistently achieves its purpose over several datasets.
arXiv Detail & Related papers (2021-04-20T17:18:34Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.