論文の概要: Learning Hamiltonian Density Using DeepONet
- arxiv url: http://arxiv.org/abs/2502.19994v1
- Date: Thu, 27 Feb 2025 11:21:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:35.704381
- Title: Learning Hamiltonian Density Using DeepONet
- Title(参考訳): DeepONet を用いたハミルトン密度の学習
- Authors: Baige Xu, Yusuke Tanaka, Takashi Matsubara, Takaharu Yaguchi,
- Abstract要約: 本稿では,波動方程式のモデル化のための演算子学習手法を提案する。
特に,方程式の定式化に必要な変分微分を計算する方法を提案する。
- 参考スコア(独自算出の注目度): 14.60505438640729
- License:
- Abstract: In recent years, deep learning for modeling physical phenomena which can be described by partial differential equations (PDEs) have received significant attention. For example, for learning Hamiltonian mechanics, methods based on deep neural networks such as Hamiltonian Neural Networks (HNNs) and their variants have achieved progress. However, existing methods typically depend on the discretization of data, and the determination of required differential operators is often necessary. Instead, in this work, we propose an operator learning approach for modeling wave equations. In particular, we present a method to compute the variational derivatives that are needed to formulate the equations using the automatic differentiation algorithm. The experiments demonstrated that the proposed method is able to learn the operator that defines the Hamiltonian density of waves from data with unspecific discretization without determination of the differential operators.
- Abstract(参考訳): 近年,偏微分方程式(PDE)によって記述できる物理現象のモデリングのための深層学習が注目されている。
例えば、ハミルトニアン力学の学習では、ハミルトンニューラルネットワーク(HNN)などのディープニューラルネットワークに基づく手法が進歩している。
しかし、既存の手法は典型的にはデータの離散化に依存しており、必要な微分作用素を決定することがしばしば必要である。
そこで本研究では,波動方程式をモデル化するための演算子学習手法を提案する。
特に,自動微分アルゴリズムを用いて方程式の定式化に必要な変分微分を計算する手法を提案する。
実験により,差分演算子を決定することなく,非特異な離散化を伴うデータから波のハミルトン密度を定義する演算子を学習できることが実証された。
関連論文リスト
- Operator-learning-inspired Modeling of Neural Ordinary Differential
Equations [38.17903151426809]
本稿では,時間微分項を定義するニューラル演算子に基づく手法を提案する。
一般下流タスクを用いた実験では,提案手法は既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-12-16T00:29:15Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - A PINN Approach to Symbolic Differential Operator Discovery with Sparse
Data [0.0]
本研究では,実験データが少ない状況下で微分作用素の記号的発見を行う。
微分方程式における未知の隠れ項の表現を学習するニューラルネットワークを追加することで、PINNのアプローチを変更する。
このアルゴリズムは微分方程式に対する代理解と隠れた項のブラックボックス表現の両方を与える。
論文 参考訳(メタデータ) (2022-12-09T02:09:37Z) - Neural ODEs with Irregular and Noisy Data [8.349349605334316]
ノイズや不規則なサンプル測定を用いて微分方程式を学習する手法について議論する。
我々の方法論では、ディープニューラルネットワークとニューラル常微分方程式(ODE)アプローチの統合において、大きな革新が見られる。
ベクトル場を記述するモデルを学習するためのフレームワークは,雑音測定において非常に効果的である。
論文 参考訳(メタデータ) (2022-05-19T11:24:41Z) - Learning Dynamics from Noisy Measurements using Deep Learning with a
Runge-Kutta Constraint [9.36739413306697]
そこで本研究では,雑音と疎サンプルを用いた微分方程式の学習手法について論じる。
我々の方法論では、ディープニューラルネットワークと古典的な数値積分法の統合において、大きな革新が見られる。
論文 参考訳(メタデータ) (2021-09-23T15:43:45Z) - Feature Engineering with Regularity Structures [4.082216579462797]
機械学習タスクの特徴として,正則構造理論からのモデルの利用について検討する。
本研究では、時空信号に付随するモデル特徴ベクトルの柔軟な定義と、これらの特徴を線形回帰と組み合わせる方法を示す2つのアルゴリズムを提供する。
我々はこれらのアルゴリズムを、与えられた強制と境界データを用いてPDEの解を学ぶために設計されたいくつかの数値実験に適用する。
論文 参考訳(メタデータ) (2021-08-12T17:53:47Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
本稿では,ニューラルネットワークモデルにおける勾配の効率的な近似法を提案する。
我々は、分類、密度推定、推論近似タスクにおいて、ニューラルODEをトレーニングするリバースダイナミック手法と比較する。
論文 参考訳(メタデータ) (2020-03-11T13:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。