論文の概要: PINN-DT: Optimizing Energy Consumption in Smart Building Using Hybrid Physics-Informed Neural Networks and Digital Twin Framework with Blockchain Security
- arxiv url: http://arxiv.org/abs/2503.00331v1
- Date: Sat, 01 Mar 2025 03:37:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:23:12.901222
- Title: PINN-DT: Optimizing Energy Consumption in Smart Building Using Hybrid Physics-Informed Neural Networks and Digital Twin Framework with Blockchain Security
- Title(参考訳): PINN-DT:ハイブリッド物理インフォームドニューラルネットワークとブロックチェーンセキュリティを用いたディジタルツインフレームワークによるスマートビルのエネルギー消費の最適化
- Authors: Hajar Kazemi Naeini, Roya Shomali, Abolhassan Pishahang, Hamidreza Hasanzadeh, Mahdieh Mohammadi, Saeid Asadi, Ahmad Gholizadeh Lonbar,
- Abstract要約: 本研究は,予測エネルギー最適化を強化するための多面的手法を提案する。
このモデルは、スマートメーターエネルギー消費データ、再生可能エネルギー出力、動的価格設定、IoTデバイスから収集されたユーザの好みなど、包括的なデータセットを使用してトレーニングされ、検証された。
提案手法は平均絶対誤差(MAE)が0.237 kWh、ルート平均平方誤差(RMSE)が0.298 kWh、R2が0.978、データ分散の97.8%で予測性能に優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The advancement of smart grid technologies necessitates the integration of cutting-edge computational methods to enhance predictive energy optimization. This study proposes a multi-faceted approach by incorporating (1) Deep Reinforcement Learning (DRL) agents trained using data from Digital Twins (DTs) to optimize energy consumption in real time, (2) Physics-Informed Neural Networks (PINNs) to seamlessly embed physical laws within the optimization process, ensuring model accuracy and interpretability, and (3) Blockchain (BC) technology to facilitate secure and transparent communication across the smart grid infrastructure. The model was trained and validated using comprehensive datasets, including smart meter energy consumption data, renewable energy outputs, dynamic pricing, and user preferences collected from IoT devices. The proposed framework achieved superior predictive performance with a Mean Absolute Error (MAE) of 0.237 kWh, Root Mean Square Error (RMSE) of 0.298 kWh, and an R-squared (R2) value of 0.978, indicating a 97.8% explanation of data variance. Classification metrics further demonstrated the model's robustness, achieving 97.7% accuracy, 97.8% precision, 97.6% recall, and an F1 Score of 97.7%. Comparative analysis with traditional models like Linear Regression, Random Forest, SVM, LSTM, and XGBoost revealed the superior accuracy and real-time adaptability of the proposed method. In addition to enhancing energy efficiency, the model reduced energy costs by 35%, maintained a 96% user comfort index, and increased renewable energy utilization to 40%. This study demonstrates the transformative potential of integrating PINNs, DT, and Blockchain technologies to optimize energy consumption in smart grids, paving the way for sustainable, secure, and efficient energy management systems.
- Abstract(参考訳): スマートグリッド技術の進歩は、予測エネルギー最適化を強化するために最先端の計算手法の統合を必要とする。
本研究では,(1)Digital Twins(DT)のデータを用いて訓練された深層強化学習(DRL)エージェントをリアルタイムにエネルギー消費を最適化し,(2)物理情報ニューラルネットワーク(PINN)を用いて物理法則を最適化プロセス内にシームレスに埋め込み,モデルの精度と解釈性を確保すること,(3)スマートグリッドインフラストラクチャ間のセキュアで透過的な通信を容易にするBlockchain(BC)技術を組み込んだ多面的アプローチを提案する。
このモデルは、スマートメーターエネルギー消費データ、再生可能エネルギー出力、動的価格設定、IoTデバイスから収集されたユーザの好みなど、包括的なデータセットを使用してトレーニングされ、検証された。
提案手法は平均絶対誤差(MAE)が0.237 kWh、ルート平均平方誤差(RMSE)が0.298 kWh、R2が0.978、データ分散の97.8%で予測性能に優れていた。
分類基準はさらにモデルの堅牢性を示し、精度は97.7%、精度は97.8%、リコールは97.6%、スコアは97.7%だった。
線形回帰、ランダムフォレスト、SVM、LSTM、XGBoostといった従来のモデルとの比較分析により、提案手法の精度とリアルタイム適応性について明らかにした。
エネルギー効率の向上に加えて、モデルではエネルギーコストを35%削減し、96%のユーザー快適指数を維持し、再生可能エネルギー利用率を40%に向上させた。
本研究では、PINN、DT、Blockchain技術を統合することにより、スマートグリッドにおけるエネルギー消費を最適化し、持続的でセキュアで効率的なエネルギー管理システムを実現するための変革的可能性を示す。
関連論文リスト
- Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
本稿では,安定したデータのみを用いて,スマートグリッドの不安定性を検出する新しいフレームワークを提案する。
ジェネレータはGAN(Generative Adversarial Network)に依存しており、ジェネレータは不安定なデータを生成するために訓練される。
我々の解は、実世界の安定と不安定なサンプルからなるデータセットでテストされ、格子安定性の予測において最大97.5%、敵攻撃の検出において最大98.9%の精度を達成する。
論文 参考訳(メタデータ) (2025-01-27T20:48:25Z) - THOR: A Generic Energy Estimation Approach for On-Device Training [34.57867978862375]
THORは、ディープニューラルネットワーク(DNN)トレーニングにおけるエネルギー消費推定のための一般的なアプローチである。
我々は、様々な現実世界のプラットフォームにまたがる様々なタイプのモデルで広範な実験を行う。
その結果,THORは平均絶対パーセンテージ誤差(MAPE)を最大30%削減した。
論文 参考訳(メタデータ) (2025-01-27T03:29:02Z) - BEFL: Balancing Energy Consumption in Federated Learning for Mobile Edge IoT [2.6872737601772956]
Mobile Edge IoT(MEIoT)では、トレーニングと通信プロセスはデバイスの限られたバッテリーリソースを著しく減らすことができる。
我々は,グローバルモデル精度の向上,全エネルギー消費の最小化,デバイス間のエネルギー利用格差の低減という,3つの目標のバランスを図るための共同最適化フレームワークであるBEFLを提案する。
実験の結果、BEFLはグローバルモデル精度を1.6%改善し、エネルギー消費のばらつきを72.7%低減し、既存の方法と比較して総エネルギー消費を28.2%低減することがわかった。
論文 参考訳(メタデータ) (2024-12-05T07:58:32Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - Just In Time Transformers [2.7350304370706797]
JITtransは,エネルギー消費予測精度を大幅に向上させる,トランスフォーマー深層学習モデルである。
本研究は, エネルギー管理を革新し, 持続可能な電力システムを構築するための先進的な予測技術の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-10-22T10:33:00Z) - Fast Cell Library Characterization for Design Technology Co-Optimization Based on Graph Neural Networks [0.1752969190744922]
設計技術の共同最適化(DTCO)は、最適パワー、性能、領域を達成する上で重要な役割を果たす。
本稿では,高速かつ正確なセルライブラリ解析のためのグラフニューラルネットワーク(GNN)に基づく機械学習モデルを提案する。
論文 参考訳(メタデータ) (2023-12-20T06:10:27Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AIモデルは、エネルギー消費と環境持続可能性に前例のない課題を提示する。
有望な解決策の1つは、アナログコンピューティングを再考することである。
ここでは、構造的塑性に着想を得たエッジプルーニングを用いたユニバーサルソリューション、ソフトウェア・ハードウエアの共設計について報告する。
論文 参考訳(メタデータ) (2023-11-13T08:59:01Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - EnsembleNTLDetect: An Intelligent Framework for Electricity Theft
Detection in Smart Grid [0.0]
本稿では,堅牢でスケーラブルな電気盗難検出フレームワークであるEnsembleNTLDetectを紹介する。
一連の効率的なデータ前処理技術と機械学習モデルを使って、電気盗難を正確に検出する。
Conditional Generative Adversarial Network (CTGAN) は、堅牢なトレーニングを保証するためにデータセットを増強するために使用される。
論文 参考訳(メタデータ) (2021-10-09T08:19:03Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。