論文の概要: A Multi-Sensor Fusion Approach for Rapid Orthoimage Generation in Large-Scale UAV Mapping
- arxiv url: http://arxiv.org/abs/2503.01202v2
- Date: Tue, 04 Mar 2025 11:59:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:13:52.932774
- Title: A Multi-Sensor Fusion Approach for Rapid Orthoimage Generation in Large-Scale UAV Mapping
- Title(参考訳): 大規模UAVマッピングにおける高速オルソイメージ生成のためのマルチセンサ融合手法
- Authors: Jialei He, Zhihao Zhan, Zhituo Tu, Xiang Zhu, Jie Yuan,
- Abstract要約: グローバル測位システム(GPS)、慣性計測ユニット(IMU)、4Dミリ波レーダとカメラを統合したマルチセンサUAVシステムにより、この問題に対する効果的な解決策を提供することができる。
予め最適化された特徴マッチング手法を導入し、マッチング速度と精度を向上させる。
実験の結果,提案手法は短時間で正確な特徴マッチングを実現できることがわかった。
- 参考スコア(独自算出の注目度): 3.321306647655686
- License:
- Abstract: Rapid generation of large-scale orthoimages from Unmanned Aerial Vehicles (UAVs) has been a long-standing focus of research in the field of aerial mapping. A multi-sensor UAV system, integrating the Global Positioning System (GPS), Inertial Measurement Unit (IMU), 4D millimeter-wave radar and camera, can provide an effective solution to this problem. In this paper, we utilize multi-sensor data to overcome the limitations of conventional orthoimage generation methods in terms of temporal performance, system robustness, and geographic reference accuracy. A prior-pose-optimized feature matching method is introduced to enhance matching speed and accuracy, reducing the number of required features and providing precise references for the Structure from Motion (SfM) process. The proposed method exhibits robustness in low-texture scenes like farmlands, where feature matching is difficult. Experiments show that our approach achieves accurate feature matching orthoimage generation in a short time. The proposed drone system effectively aids in farmland detection and management.
- Abstract(参考訳): 無人航空機(UAV)による大規模なオルソイメージの急速な生成は、航空地図分野における長年の研究の焦点となっている。
グローバル測位システム(GPS)、慣性計測ユニット(IMU)、4Dミリ波レーダとカメラを統合したマルチセンサUAVシステムにより、この問題に対する効果的な解決策を提供することができる。
本稿では,時間的性能,システムロバスト性,地理的基準精度の観点から,従来のオルソニメージ生成手法の限界を克服するために,マルチセンサデータを利用する。
予め最適化された特徴マッチング手法を導入し、マッチング速度と精度を高め、必要な特徴の数を減らし、Structure from Motion (SfM)プロセスの正確な参照を提供する。
提案手法は, 特徴マッチングが困難な農地などの低テクスチャシーンにおいて, 堅牢性を示す。
実験の結果,提案手法は短時間で正確な特徴マッチングを実現できることがわかった。
提案するドローンシステムは、農地の検出と管理を効果的に支援する。
関連論文リスト
- Towards Real-Time 2D Mapping: Harnessing Drones, AI, and Computer Vision for Advanced Insights [0.0]
本稿では、ドローン画像と機械学習とコンピュータビジョンを組み合わせることで、様々な地形における速度、精度、適応性の課題を克服する高度マッピングシステムを提案する。
このシステムは、最小レイテンシでシームレスで高解像度の地図を生成し、防衛作戦において戦略的優位性を提供する。
論文 参考訳(メタデータ) (2024-12-28T16:47:18Z) - Real-Time Detection for Small UAVs: Combining YOLO and Multi-frame Motion Analysis [0.8971132850029493]
無人航空機(UAV)検出技術は、セキュリティリスクの軽減と、軍用および民間の双方のアプリケーションにおけるプライバシーの保護において重要な役割を担っている。
従来の検出手法は、長距離で非常に小さなピクセルを持つUAVターゲットを識別する上で重要な課題に直面している。
我々は,YOLO(You Only Look Once)オブジェクト検出と多フレームモーション検出を併用したGlobal-Local YOLO-Motion(GL-YOMO)検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-10T14:30:50Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
単眼カメラと軽量ToFセンサを備えた初の高密度SLAMシステムを提案する。
本稿では,RGBカメラと軽量ToFセンサの両方の信号のレンダリングをサポートするマルチモーダル暗黙のシーン表現を提案する。
実験により,本システムは軽量なToFセンサの信号をうまく利用し,競合的な結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-28T07:56:13Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
サラウンドビュー画像を用いた3次元物体検出は、自動運転にとって必須の課題である。
マルチビュー画像における3次元オブジェクト検出のためのスパースアテンションと直接特徴クエリを探索するトランスフォーマーベースのフレームワークであるDETR4Dを提案する。
論文 参考訳(メタデータ) (2022-12-15T14:18:47Z) - Real Time Incremental Image Mosaicking Without Use of Any Camera
Parameter [1.2891210250935146]
本稿では,UAVを用いたインクリメンタルモザイクのリアルタイム作成システムを提案する。
モザイクのプロセスでは、画像の特徴抽出、画像間の類似したキーポイントのマッチング、画像のワープとアライメントのためのホモグラフィ行列の探索、モザイクをよりよく見るために画像のブレンドなどが行われた。
論文 参考訳(メタデータ) (2022-12-05T14:28:54Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
本稿では3次元物体検出にミリ波レーダとカメラセンサ融合を用いる方法について述べる。
より優れた特徴表現のための鳥眼ビュー(BEV)における特徴レベル融合を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-25T13:21:37Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Planetary UAV localization based on Multi-modal Registration with
Pre-existing Digital Terrain Model [0.5156484100374058]
我々は,UAV上のナディルビューカメラを用いて,惑星UAVの位置を推定するマルチモーダル登録に基づくSLAMアルゴリズムを提案する。
オンボードUAV画像とプリインストールデジタル地形モデルとのスケールと外観の違いを克服するために,UAV画像とDEMの地形特性がクロスパワースペクトルを介して周波数領域で相関できることを示す理論的モデルを提案した。
提案するローカライゼーションアルゴリズムのロバスト性と有効性をテストするために,惑星探査のための新しいクロスソースドローンベースのローカライゼーションデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-24T02:54:01Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
水平アンカーから変換された指向性提案を生成するために、任意指向領域提案ネットワーク(AO-RPN)を提案する。
正確なバウンディングボックスを得るために,検出タスクを複数のサブタスクに分離し,マルチヘッドネットワークを提案する。
各ヘッドは、対応するタスクに最適な特徴を学習するために特別に設計されており、ネットワークがオブジェクトを正確に検出することができる。
論文 参考訳(メタデータ) (2020-12-24T06:36:48Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
本稿では,ディープニューラルネットワークのエンドツーエンドトレーニングに基づくカメラによる車間距離と相対速度推定手法を提案する。
提案手法の重要な特徴は,2つの時間的単眼フレームによって提供される複数の視覚的手がかりの統合である。
また,移動場における視線歪みの影響を緩和する車両中心サンプリング機構を提案する。
論文 参考訳(メタデータ) (2020-06-07T08:18:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。