論文の概要: "Would You Want an AI Tutor?" Understanding Stakeholder Perceptions of LLM-based Chatbots in the Classroom
- arxiv url: http://arxiv.org/abs/2503.02885v1
- Date: Sun, 02 Feb 2025 16:50:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-09 05:42:17.807957
- Title: "Would You Want an AI Tutor?" Understanding Stakeholder Perceptions of LLM-based Chatbots in the Classroom
- Title(参考訳): 「AIチューターを欲しがる?」授業におけるLCMベースのチャットボットの参加者認識
- Authors: Caterina Fuligni, Daniel Dominguez Figaredo, Julia Stoyanovich,
- Abstract要約: LLM(Large Language Models)は、教育を含む社会のあらゆる部分で急速に普及した。
教室でLLMSに直接影響を受ける人々の認識を理解することは、AIの責任ある使用を確実にするために不可欠である、と我々は主張する。
- 参考スコア(独自算出の注目度): 7.915714424668589
- License:
- Abstract: In recent years, Large Language Models (LLMs) rapidly gained popularity across all parts of society, including education. After initial skepticism and bans, many schools have chosen to embrace this new technology by integrating it into their curricula in the form of virtual tutors and teaching assistants. However, neither the companies developing this technology nor the public institutions involved in its implementation have set up a formal system to collect feedback from the stakeholders impacted by them. In this paper, we argue that understanding the perceptions of those directly affected by LLMS in the classroom, such as students and teachers, as well as those indirectly impacted, like parents and school staff, is essential for ensuring responsible use of AI in this critical domain. Our contributions are two-fold. First, we present results of a literature review focusing on the perceptions of LLM-based chatbots in education. We highlight important gaps in the literature, such as the exclusion of key educational agents (e.g., parents or school administrators) when analyzing the role of stakeholders, and the frequent omission of the learning contexts in which the AI systems are implemented. Thus, we present a taxonomy that organizes existing literature on stakeholder perceptions. Second, we propose the Contextualized Perceptions for the Adoption of Chatbots in Education (Co-PACE) framework, which can be used to systematically elicit perceptions and inform whether and how LLM-based chatbots should be designed, developed, and deployed in the classroom.
- Abstract(参考訳): 近年、Large Language Models (LLMs) は教育を含む社会のあらゆる領域で急速に普及している。
初期の懐疑論と禁止の後、多くの学校は、バーチャルチューターとアシスタントの形でカリキュラムに統合することで、この新しい技術を取り入れることを選んだ。
しかし、この技術を開発する企業も、その実施に関わる公共機関も、影響を受けた利害関係者からのフィードバックを集めるための公式なシステムを構築していない。
本稿では,学生や教師などの教室におけるLLMSによる直接的影響の認識と,親や学校の職員など間接的影響の認識の理解が,この重要な領域におけるAIの責任ある利用の確保に不可欠である,と論じる。
私たちの貢献は2倍です。
まず,教育におけるLLMベースのチャットボットの認識に着目した文献レビューの結果を紹介する。
我々は、利害関係者の役割を分析する際に重要な教育エージェント(例えば、親や学校の管理者)を除外することや、AIシステムが実装される学習コンテキストの欠落など、文学における重要なギャップを強調した。
そこで我々は,既存のステークホルダーの認識に関する文献を整理する分類法を提案する。
第2に,学習におけるチャットボットの採用に関するコンテキスト認識(Co-PACE)フレームワークを提案する。
関連論文リスト
- Embracing AI in Education: Understanding the Surge in Large Language Model Use by Secondary Students [53.20318273452059]
OpenAIのChatGPTのような大規模言語モデル(LLM)は、新しい教育の道を開いた。
学校制限にもかかわらず,中高生300人以上を対象に調査を行ったところ,学生の70%がLDMを利用していることがわかった。
我々は、対象特化モデル、パーソナライズドラーニング、AI教室など、このような問題に対処するいくつかのアイデアを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:19:34Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Towards an Operational Responsible AI Framework for Learning Analytics in Higher Education [0.2796197251957245]
我々は、大手IT企業を含む11の責任あるAIフレームワークを、高等教育におけるLAの文脈にマップする。
この結果、透明性、公平性、説明責任といった7つの重要な原則が特定された。
我々は,HE機関に実践的な指導を提供する新しい枠組みを提案し,コミュニティインプットによって発展するように設計されている。
論文 参考訳(メタデータ) (2024-10-08T08:55:24Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC(Massive AI-empowered Course)は、LLM駆動のマルチエージェントシステムを活用して、AIが強化された教室を構築するオンライン教育の新たな形態である。
中国一の大学である清華大学で予備的な実験を行う。
論文 参考訳(メタデータ) (2024-09-05T13:22:51Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
大規模言語モデル(LLM)は、コンピュータ、Webブラウザ、ブラウザベースのインターフェースによるインターネット接続を持つ人なら誰でも利用できるようになった。
本稿では,ChatGPTインタフェースにおける対話型フィードバック機能の可能性について検討し,ユーザ入力の形状やイテレーションへの参加について分析する。
論文 参考訳(メタデータ) (2024-08-27T13:50:37Z) - Impacts of Anthropomorphizing Large Language Models in Learning Environments [0.0]
大きな言語モデル(LLM)は、学習環境において、学習仲間として、あるいは家庭教師として、教育をサポートするために、ますます使われている。
本研究の目的は,学習環境におけるLLMの人為的形態化が教育理論に与える影響について考察することである。
論文 参考訳(メタデータ) (2024-07-22T06:28:54Z) - Understanding Teacher Perspectives and Experiences after Deployment of
AI Literacy Curriculum in Middle-school Classrooms [12.35885897302579]
我々は,MIT RAICAカリキュラムのモジュール実装にともなう7人の教師の経験を考察した。
我々の分析は、AIモジュールが、この分野における教師の知識を拡大したことを示唆している。
私たちの教師は、技術資源をナビゲートする際に、より良い外部支援の必要性を主張しました。
論文 参考訳(メタデータ) (2023-12-08T05:36:16Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Analysis of the User Perception of Chatbots in Education Using A Partial
Least Squares Structural Equation Modeling Approach [0.0]
オプティミズム、イノベーティブネス、不快感、不安、透明性、倫理、相互作用、エンゲージメント、正確さといった主要な行動関連側面について研究した。
その結果、最適性と革新性は、知覚的使用覚(PEOU)と知覚的有用性(PU)に正の相関があることが判明した。
論文 参考訳(メタデータ) (2023-11-07T00:44:56Z) - The Robots are Here: Navigating the Generative AI Revolution in
Computing Education [4.877774347152004]
人工知能(AI)の最近の進歩は、コンピューティングを根本的に再構築している。
大規模言語モデル(LLM)は、ソースコードと自然言語命令を効果的に生成、解釈できるようになった。
これらの能力は、教育者がこれらの課題にどう対処すべきかという緊急の疑問を引き起こしている。
論文 参考訳(メタデータ) (2023-10-01T12:54:37Z) - PapagAI:Automated Feedback for Reflective Essays [48.4434976446053]
ドクティック理論をベースとして,ハイブリッドAIシステムとして実装された,初のオープンソース自動フィードバックツールを提案する。
本研究の主な目的は,学生の学習成果の向上と,講師の指導活動を補完することである。
論文 参考訳(メタデータ) (2023-07-10T11:05:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。