論文の概要: Fast Jet Tagging with MLP-Mixers on FPGAs
- arxiv url: http://arxiv.org/abs/2503.03103v1
- Date: Wed, 05 Mar 2025 01:37:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:00.506427
- Title: Fast Jet Tagging with MLP-Mixers on FPGAs
- Title(参考訳): FPGA上でのMLPミクサを用いた高速ジェットタギング
- Authors: Chang Sun, Jennifer Ngadiuba, Maurizio Pierini, Maria Spiropulu,
- Abstract要約: 実時間ジェットタグ作成における分散ミクサーモデルの革新的利用について検討し,FPGAのような資源制約のあるハードウェアへの実現可能性を確立する。
大型ハドロン衝突型加速器を模擬したデータセットの最先端性能を実現する。
非置換不変アーキテクチャは、スマートな機能優先順位付けと効率的なFPGAデプロイメントを可能にし、パーティクルコリダでのリアルタイムデータ処理における機械学習のための新しいベンチマークを設定する。
- 参考スコア(独自算出の注目度): 1.5087357654868088
- License:
- Abstract: We explore the innovative use of MLP-Mixer models for real-time jet tagging and establish their feasibility on resource-constrained hardware like FPGAs. MLP-Mixers excel in processing sequences of jet constituents, achieving state-of-the-art performance on datasets mimicking Large Hadron Collider conditions. By using advanced optimization techniques such as High-Granularity Quantization and Distributed Arithmetic, we achieve unprecedented efficiency. These models match or surpass the accuracy of previous architectures, reduce hardware resource usage by up to 97%, double the throughput, and half the latency. Additionally, non-permutation-invariant architectures enable smart feature prioritization and efficient FPGA deployment, setting a new benchmark for machine learning in real-time data processing at particle colliders.
- Abstract(参考訳): 我々は,MLP-Mixerモデルによるリアルタイムジェットタグの革新的利用について検討し,FPGAのような資源制約のあるハードウェアへの実現可能性を確立する。
MLPミクサーはジェット部品の処理シーケンスに優れ、大型ハドロン衝突型加速器の条件を模倣したデータセットの最先端性能を達成する。
高グラニュラリティ量子化や分散算術といった高度な最適化手法を用いて、前例のない効率性を実現する。
これらのモデルは、以前のアーキテクチャの正確さにマッチするか、超えるか、ハードウェアリソース使用量を最大97%削減し、スループットを2倍にし、レイテンシの半分を削減します。
さらに、非置換不変アーキテクチャは、スマートな機能優先順位付けと効率的なFPGAデプロイメントを可能にし、パーティクル衝突器でのリアルタイムデータ処理における機械学習のための新しいベンチマークを設定する。
関連論文リスト
- Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
大規模言語モデル(LLM)は広く応用されているが、効率的な推論では課題に直面している。
本稿では、並列計算を容易にし、対称量子化をサポートする新しいバイポーラ-INTデータフォーマットを提案する。
ビットレベルで分解・復元する任意の精度行列乗算方式を実装し,フレキシブルな精度を実現する。
論文 参考訳(メタデータ) (2024-09-26T14:17:58Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - SWAT: Scalable and Efficient Window Attention-based Transformers Acceleration on FPGAs [3.302913401404089]
スライディングウィンドウベースの静的スパースアテンションは、入力トークンのアテンションスコープを制限することで問題を緩和する。
本稿では,データフローを意識したFPGAベースのアクセラレーション設計であるSWATを提案する。
論文 参考訳(メタデータ) (2024-05-27T10:25:08Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
数十億のパラメータを誇った大規模言語モデル(LLM)は、推論ワークロードの効率的なデプロイに対する大きな需要を生み出している。
本稿では,FPGA上でのLLM推論におけるモデル固有空間加速度の実現可能性と可能性について検討する。
論文 参考訳(メタデータ) (2023-12-23T04:27:06Z) - Fast Neural Network Inference on FPGAs for Triggering on Long-Lived
Particles at Colliders [0.0]
本研究では,中性長寿命粒子が検出器体積内で崩壊する事象を選択するための2つの機械学習アルゴリズムを提案する。
提案したアルゴリズムは, ベンチマークのシナリオにおいて有効であることが証明され, FPGAカード上での高速化では精度が劣化しないことが判明した。
論文 参考訳(メタデータ) (2023-07-11T10:17:57Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
多くのAIタスクにおいて、注意に基づくニューラルネットワークが普及している。
注意機構とフィードフォワードネットワーク(FFN)の使用は、過剰な計算とメモリ資源を必要とする。
本稿では,注目機構とFFNの両方を近似するために,バタフライの分散パターンを統一したハードウェアフレンドリーな変種を提案する。
論文 参考訳(メタデータ) (2022-09-20T09:28:26Z) - Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark [11.575901540758574]
我々は,フィールドプログラマブルゲートアレイ(FPGA)プラットフォーム上でのTiny Inference Benchmarkの開発経験を示す。
我々は、FPGA上で最適化されたニューラルネットワークのAIハードウェアコーデックを民主化することを目的として、オープンソースのhls4mlとFINN perJを使用している。
ソリューションはシステムオンチップ(Pynq-Z2)と純粋なFPGA(Arty A7-100T)プラットフォームにデプロイされる。
論文 参考訳(メタデータ) (2022-06-23T15:57:17Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
本稿では、変換周波数領域において、ドメイン固有の特徴をフィルタリングする新しい周波数認識アーキテクチャを提案する。
3つのベンチマークの実験では、最先端の手法をそれぞれ3%、4%、9%のマージンで上回った。
論文 参考訳(メタデータ) (2022-03-24T07:26:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。