Preparing Tetra-Digit Long-Range Entangled States via Unified Sequential Quantum Circuit
- URL: http://arxiv.org/abs/2503.05374v1
- Date: Fri, 07 Mar 2025 12:32:13 GMT
- Title: Preparing Tetra-Digit Long-Range Entangled States via Unified Sequential Quantum Circuit
- Authors: Yu-Tao Hu, Meng-Yuan Li, Peng Ye,
- Abstract summary: This work introduces a framework to prepare ground states of Tetra-Digit (TD) quantum spin models.<n> TD models host spatially extended excitations with constrained mobility and deformability.<n>With experimental feasibility via synthetic dimensions in quantum simulators, this framework bridges a great variety of gapped long-range entangled states cross dimensions through quantum circuits.
- Score: 10.829837447593139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quest to systematically prepare long-range entangled phases has gained momentum with advances in quantum circuit design, particularly through sequential quantum circuits (SQCs) that constrain entanglement growth via locality and depth constraints. This work introduces a \textit{unified} SQC framework to prepare ground states of Tetra-Digit (TD) quantum spin models -- a class of long-range entangled stabilizer codes labeled by a four-digit index $[d_n,d_s,d_l,D]$ -- which encompass Toric Codes across dimensions and the X-cube fracton phase as special cases. Featuring a hierarchical structure of entanglement renormalization group, TD models host spatially extended excitations (e.g., loops, membranes, and exotic non-manifold objects) with constrained mobility and deformability, and exhibit system-size-dependent ground state degeneracies that scale exponentially with a polynomial in linear sizes. We demonstrate the unified SQC through low-dimension examples first, graphically and algebraically, and then extend to general cases, with a detailed proof for the effectiveness of general SQC given in the appendix. With experimental feasibility via synthetic dimensions in quantum simulators, this framework bridges a great variety of gapped long-range entangled states cross dimensions through quantum circuits and shows plentiful mathematical and physical structures in TD models. Through unifying previously disparate preparation strategies, it offers a pathway toward engineered topological phases and fault-tolerant technologies.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Probing Confinement Through Dynamical Quantum Phase Transitions: From
Quantum Spin Models to Lattice Gauge Theories [0.0]
We show that a change in the type of dynamical quantum phase transitions accompanies the confinement-deconfinement transition.
Our conclusions can be tested in modern quantum-simulation platforms, such as ion-trap setups and cold-atom experiments of gauge theories.
arXiv Detail & Related papers (2023-10-18T18:00:04Z) - Observation of higher-order topological states on a quantum computer [2.498439320062193]
We develop an approach that places NISQ hardware as a suitable platform for simulating multi-dimensional condensed matter systems.
By fully exploiting the exponentially large Hilbert space of a quantum chain, we encoded a high-dimensional model in terms of non-local many-body interactions.
We demonstrate the power of our approach by realizing, on IBM transmon-based quantum computers, higher-order topological states in up to four dimensions.
arXiv Detail & Related papers (2023-03-03T19:00:17Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Transition to chaos in extended systems and their quantum impurity
models [0.0]
Chaos sets a fundamental limit to quantum-information processing schemes.
We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices.
arXiv Detail & Related papers (2022-05-02T18:01:09Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Many-body Hilbert space scarring on a superconducting processor [19.205729719781548]
Quantum many-body scarring (QMBS) is a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems.
Here, we experimentally realize a distinct kind of QMBS phenomena by approximately decoupling a part of the many-body Hilbert space in the computational basis.
Our experimental findings broaden the realm of QMBS mechanisms and pave the way to exploiting correlations in QMBS states for applications in quantum information technology.
arXiv Detail & Related papers (2022-01-10T16:33:38Z) - Generating high-order quantum exceptional points in synthetic dimensions [0.0]
High-order exceptional points (EPs) can possess a number of intriguing properties related to, e.g., chiral transport and enhanced sensitivity.
Previous proposals to realize non-Hermitian Hamiltonians (NHHs) with high-order EPs have been mainly based on either direct construction of spatial networks of coupled modes.
Here, we introduce a simple and effective method for engineering NHHs with high-order quantum EPs.
arXiv Detail & Related papers (2021-02-26T18:50:21Z) - Tensor network models of AdS/qCFT [69.6561021616688]
We introduce the notion of a quasiperiodic conformal field theory (qCFT)
We show that qCFT can be best understood as belonging to a paradigm of discrete holography.
arXiv Detail & Related papers (2020-04-08T18:00:05Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.