論文の概要: Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
- arxiv url: http://arxiv.org/abs/2503.06320v1
- Date: Sat, 08 Mar 2025 19:32:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:45:33.486325
- Title: Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
- Title(参考訳): ランダム初期化とディープアンサンブルを用いた物理情報ニューラルネットワークによる複数解の学習と発見
- Authors: Zongren Zou, Zhicheng Wang, George Em Karniadakis,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)の複数の解を発見する能力について検討する。
PINNは、非線形常微分方程式と偏微分方程式の複数の解を効果的に発見することができる。
本稿では,従来の数値解法におけるPINN生成解を初期条件や初期推定として利用することを提案する。
- 参考スコア(独自算出の注目度): 10.047968926134363
- License:
- Abstract: We explore the capability of physics-informed neural networks (PINNs) to discover multiple solutions. Many real-world phenomena governed by nonlinear differential equations (DEs), such as fluid flow, exhibit multiple solutions under the same conditions, yet capturing this solution multiplicity remains a significant challenge. A key difficulty is giving appropriate initial conditions or initial guesses, to which the widely used time-marching schemes and Newton's iteration method are very sensitive in finding solutions for complex computational problems. While machine learning models, particularly PINNs, have shown promise in solving DEs, their ability to capture multiple solutions remains underexplored. In this work, we propose a simple and practical approach using PINNs to learn and discover multiple solutions. We first reveal that PINNs, when combined with random initialization and deep ensemble method -- originally developed for uncertainty quantification -- can effectively uncover multiple solutions to nonlinear ordinary and partial differential equations (ODEs/PDEs). Our approach highlights the critical role of initialization in shaping solution diversity, addressing an often-overlooked aspect of machine learning for scientific computing. Furthermore, we propose utilizing PINN-generated solutions as initial conditions or initial guesses for conventional numerical solvers to enhance accuracy and efficiency in capturing multiple solutions. Extensive numerical experiments, including the Allen-Cahn equation and cavity flow, where our approach successfully identifies both stable and unstable solutions, validate the effectiveness of our method. These findings establish a general and efficient framework for addressing solution multiplicity in nonlinear differential equations.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)の複数の解を発見する能力について検討する。
流体流のような非線形微分方程式(DE)によって支配される多くの実世界の現象は、同じ条件下で複数の解を示すが、この解の多重性は依然として重要な課題である。
重要な困難は、適切な初期条件や初期推定を与えることであり、広く使われている時間マーチングスキームとニュートンの反復法は複雑な計算問題の解を見つけるのに非常に敏感である。
マシンラーニングモデル、特にPINNは、DESの解決において有望であることを示しているが、複数のソリューションをキャプチャする能力はまだ探索されていない。
本研究では、PINNを用いて複数の解を学習し、発見するためのシンプルで実践的なアプローチを提案する。
PINNとランダム初期化法とディープアンサンブル法(もともと不確実な定量化のために開発された)を組み合わせることで、非線形常微分方程式や偏微分方程式(ODEs/PDEs)に対する複数の解を効果的に発見できることを最初に明らかにした。
提案手法では,解の多様性形成において初期化が重要な役割を担い,科学計算における機械学習の見過ごされがちな側面に対処する。
さらに,従来の数値解法において,PINN生成した解を初期条件や初期推定として利用することにより,複数の解を捕捉する精度と効率を向上させることを提案する。
アレン・カーン方程式やキャビティフローを含む大規模な数値実験を行い,本手法の有効性を検証した。
これらの結果は、非線形微分方程式の解乗法に対処するための汎用的で効率的な枠組みを確立している。
関連論文リスト
- Neuro-Symbolic AI for Analytical Solutions of Differential Equations [11.177091143370466]
本稿では,ニューロシンボリックAIフレームワークを用いて微分方程式の解析解を求める。
この積分は、ニューロシンボリックAIフレームワークを介して数値方程式と記号微分方程式を統一する。
様々な問題に対して,商業的解法,記号的解法,近似ニューラルネットワークの利点を示す。
論文 参考訳(メタデータ) (2025-02-03T16:06:56Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
非線形最適化問題の解法として多レベルアルゴリズムを提案し,その評価複雑性を解析する。
物理インフォームドニューラルネットワーク (PINN) を用いた偏微分方程式の解に適用し, 提案手法がより良い解法と計算量を大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-05-23T19:12:02Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - HomPINNs: homotopy physics-informed neural networks for solving the
inverse problems of nonlinear differential equations with multiple solutions [6.89453634946458]
非線形微分方程式(DE)の逆問題を解決するためにホモトピー物理情報ニューラルネットワーク(HomPINN)を提案する。
提案するフレームワークは、DEC制約を順守しながら、さまざまなソリューションにわたるラベルなしの観測を同時に近似するためにNNを使うことから始まる。
提案手法はスケーラブルで適応可能であり,複数の解と未知パラメータを用いたDESの解法として有効であることを示す。
論文 参考訳(メタデータ) (2023-04-06T01:20:23Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Solving Differential Equations Using Neural Network Solution Bundles [1.2891210250935146]
本稿では,様々な初期状態とシステムパラメータに対して,ソリューションバンドル,ODEに対するソリューションの集合として使用するニューラルネットワークを提案する。
解バンドルはシステム状態の高速かつ並列化可能な評価を示し、パラメータ推定にベイズ推論を使用するのを容易にする。
論文 参考訳(メタデータ) (2020-06-17T02:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。