論文の概要: Solving Differential Equations Using Neural Network Solution Bundles
- arxiv url: http://arxiv.org/abs/2006.14372v1
- Date: Wed, 17 Jun 2020 02:44:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 21:29:06.907024
- Title: Solving Differential Equations Using Neural Network Solution Bundles
- Title(参考訳): ニューラルネットワーク解バンドルを用いた微分方程式の解法
- Authors: Cedric Flamant, Pavlos Protopapas, David Sondak
- Abstract要約: 本稿では,様々な初期状態とシステムパラメータに対して,ソリューションバンドル,ODEに対するソリューションの集合として使用するニューラルネットワークを提案する。
解バンドルはシステム状態の高速かつ並列化可能な評価を示し、パラメータ推定にベイズ推論を使用するのを容易にする。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The time evolution of dynamical systems is frequently described by ordinary
differential equations (ODEs), which must be solved for given initial
conditions. Most standard approaches numerically integrate ODEs producing a
single solution whose values are computed at discrete times. When many varied
solutions with different initial conditions to the ODE are required, the
computational cost can become significant. We propose that a neural network be
used as a solution bundle, a collection of solutions to an ODE for various
initial states and system parameters. The neural network solution bundle is
trained with an unsupervised loss that does not require any prior knowledge of
the sought solutions, and the resulting object is differentiable in initial
conditions and system parameters. The solution bundle exhibits fast,
parallelizable evaluation of the system state, facilitating the use of Bayesian
inference for parameter estimation in real dynamical systems.
- Abstract(参考訳): 力学系の時間発展は常微分方程式(ODE)によってしばしば説明され、与えられた初期条件に対して解かなければならない。
ほとんどの標準的なアプローチは、値が離散時間で計算される単一のソリューションを生成するODEを数値的に統合する。
ODEに異なる初期条件を持つ多くの様々な解が必要な場合、計算コストは増大する。
本稿では,様々な初期状態とシステムパラメータに対して,ニューラルネットワークを解束,ODEに対する解の集合として用いることを提案する。
ニューラルネットワークソリューションバンドルは、要求されたソリューションの事前知識を必要としない教師なしの損失でトレーニングされ、その結果のオブジェクトは初期条件とシステムパラメータで微分可能である。
解束は系状態の高速かつ並列化可能な評価を示し、実力学系におけるパラメータ推定にベイズ推定を用いることを容易にする。
関連論文リスト
- Augmented neural forms with parametric boundary-matching operators for solving ordinary differential equations [0.0]
本稿では,最適化可能な境界マッチングを持つ適切なニューラルフォームを体系的に構築するフォーマリズムを提案する。
ニューマン条件やロビン条件の問題をパラメトリックディリクレ条件の等価問題に変換する新しい手法を記述する。
提案手法は,一階および二階の常微分方程式と一階のシステムを含む多種多様な問題に対して実験を行った。
論文 参考訳(メタデータ) (2024-04-30T11:10:34Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE [1.1897857181479061]
本研究では、物理システムの隠れた力学を学習できる畳み込みニューラルネットワーク(CNN)の変種を提案する。
画像や時系列などの物理系を複数の層からなるシステムとして考えるのではなく、微分方程式(DE)の形でシステムをモデル化することができる。
論文 参考訳(メタデータ) (2021-10-30T21:45:00Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - A Probabilistic State Space Model for Joint Inference from Differential
Equations and Data [23.449725313605835]
ベイズフィルタを用いて解過程を直接句する常微分方程式 (odes) の解法の新しいクラスを示す。
その後、拡張カルマンフィルタの単一の線形複雑化パスにおいて、潜力とODE溶液のベイズ推定を近似することができるようになる。
本研究では,covid-19流行データに基づく非パラメトリックsirdモデルを訓練することにより,アルゴリズムの表現力と性能を示す。
論文 参考訳(メタデータ) (2021-03-18T10:36:09Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Learning To Solve Differential Equations Across Initial Conditions [12.66964917876272]
多くのニューラルネットワークに基づく偏微分方程式解法が定式化され、古典的解法よりも性能が同等であり、場合によってはさらに優れている。
本研究では,任意の初期条件に対する偏微分方程式の解を条件付き確率分布の学習として近似する問題を提案する。
論文 参考訳(メタデータ) (2020-03-26T21:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。