論文の概要: A Deep-Learning Iterative Stacked Approach for Prediction of Reactive Dissolution in Porous Media
- arxiv url: http://arxiv.org/abs/2503.08410v1
- Date: Tue, 11 Mar 2025 13:18:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:41:57.239923
- Title: A Deep-Learning Iterative Stacked Approach for Prediction of Reactive Dissolution in Porous Media
- Title(参考訳): 多孔質媒体の反応性溶解予測のための深層学習型反復積層法
- Authors: Marcos Cirne, Hannah Menke, Alhasan Abdellatif, Julien Maes, Florian Doster, Ahmed H. Elsheikh,
- Abstract要約: 本稿では, 時間情報と空間情報の両方を取り入れた新しい深層学習手法を提案する。
数値シミュレーションデータセットでは、速度と予測精度の点で、全体的な性能が示されている。
- 参考スコア(独自算出の注目度): 0.6597195879147557
- License:
- Abstract: Simulating reactive dissolution of solid minerals in porous media has many subsurface applications, including carbon capture and storage (CCS), geothermal systems and oil & gas recovery. As traditional direct numerical simulators are computationally expensive, it is of paramount importance to develop faster and more efficient alternatives. Deep-learning-based solutions, most of them built upon convolutional neural networks (CNNs), have been recently designed to tackle this problem. However, these solutions were limited to approximating one field over the domain (e.g. velocity field). In this manuscript, we present a novel deep learning approach that incorporates both temporal and spatial information to predict the future states of the dissolution process at a fixed time-step horizon, given a sequence of input states. The overall performance, in terms of speed and prediction accuracy, is demonstrated on a numerical simulation dataset, comparing its prediction results against state-of-the-art approaches, also achieving a speedup around $10^4$ over traditional numerical simulators.
- Abstract(参考訳): 固体鉱物の多孔質媒質中での反応性溶解のシミュレーションには、炭素捕獲・貯蔵(CCS)、地熱システム、石油・ガス回収など多くの地下応用がある。
従来の数値シミュレータは計算コストがかかるため、より高速で効率的な代替品を開発することが最重要となる。
ディープラーニングベースのソリューションは、その多くは畳み込みニューラルネットワーク(CNN)上に構築されている。
しかし、これらの解は領域上の1つの場(例えば速度場)の近似に限られていた。
本稿では,時間的・空間的な情報を組み込んだ新しい深層学習手法を提案する。
数値シミュレーションデータセットでは, 予測結果と最先端手法を比較し, 従来の数値シミュレータよりも約10^4$の高速化を実現した。
関連論文リスト
- MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
マルチスケールタイムステップ(MultiPDENet)を用いたPDE組み込みネットワークを提案する。
特に,有限差分構造に基づく畳み込みフィルタを少数のパラメータで設計し,最適化する。
4階ランゲ・クッタ積分器を微細な時間スケールで備えた物理ブロックが確立され、PDEの構造を埋め込んで予測を導出する。
論文 参考訳(メタデータ) (2025-01-27T12:15:51Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator [0.0]
DeepDeepONetは、レンダリングフラックスDEを高速化する強力なツールとして登場した。
我々は、入力ペア出力の観測を伴わずにこのマッピングを実現するために、Physical-In DeepONets (PI-DeepONets) を用いている。
論文 参考訳(メタデータ) (2023-07-03T21:10:30Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Physics-informed Deep Super-resolution for Spatiotemporal Data [18.688475686901082]
ディープ・ラーニングは、粗い粒度のシミュレーションに基づいて科学的データを増やすのに使うことができる。
物理インフォームドラーニングにインスパイアされた、豊かで効率的な時間的超解像フレームワークを提案する。
その結果,提案手法の有効性と効率が,ベースラインアルゴリズムと比較して優れていることが示された。
論文 参考訳(メタデータ) (2022-08-02T13:57:35Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Assessment of machine learning methods for state-to-state approaches [0.0]
状態間アプローチにおける機械学習手法の適用の可能性について検討する。
ディープニューラルネットワークは、これらのタスクでも実行可能な技術であるようだ。
論文 参考訳(メタデータ) (2021-04-02T13:27:23Z) - ML-LBM: Machine Learning Aided Flow Simulation in Porous Media [0.0]
多孔質媒質内の流体流動の直接シミュレーションは、合理的な時間枠で解くために重要な計算資源を必要とする。
流体流の予測と直接流シミュレーションを組み合わせた統合手法について概説する。
畳み込みニューラルネットワーク(CNN)に基づくディープラーニング技術により,定常速度場を正確に推定できることが示されている。
論文 参考訳(メタデータ) (2020-04-22T01:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。