論文の概要: Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator
- arxiv url: http://arxiv.org/abs/2307.01354v1
- Date: Mon, 3 Jul 2023 21:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 19:07:03.719062
- Title: Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator
- Title(参考訳): フラックス関数演算子による多孔質媒体の多相輸送のための汎用解の学習
- Authors: Waleed Diab, Omar Chaabi, Shayma Alkobaisi, Abeeb Awotunde, Mohammed
Al Kobaisi
- Abstract要約: DeepDeepONetは、レンダリングフラックスDEを高速化する強力なツールとして登場した。
我々は、入力ペア出力の観測を伴わずにこのマッピングを実現するために、Physical-In DeepONets (PI-DeepONets) を用いている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional numerical schemes for simulating fluid flow and transport in
porous media can be computationally expensive. Advances in machine learning for
scientific computing have the potential to help speed up the simulation time in
many scientific and engineering fields. DeepONet has recently emerged as a
powerful tool for accelerating the solution of partial differential equations
(PDEs) by learning operators (mapping between function spaces) of PDEs. In this
work, we learn the mapping between the space of flux functions of the
Buckley-Leverett PDE and the space of solutions (saturations). We use
Physics-Informed DeepONets (PI-DeepONets) to achieve this mapping without any
paired input-output observations, except for a set of given initial or boundary
conditions; ergo, eliminating the expensive data generation process. By
leveraging the underlying physical laws via soft penalty constraints during
model training, in a manner similar to Physics-Informed Neural Networks
(PINNs), and a unique deep neural network architecture, the proposed
PI-DeepONet model can predict the solution accurately given any type of flux
function (concave, convex, or non-convex) while achieving up to four orders of
magnitude improvements in speed over traditional numerical solvers. Moreover,
the trained PI-DeepONet model demonstrates excellent generalization qualities,
rendering it a promising tool for accelerating the solution of transport
problems in porous media.
- Abstract(参考訳): 多孔質媒体における流体流動と輸送をシミュレーションする従来の数値スキームは計算コストがかかる。
科学計算のための機械学習の進歩は、多くの科学・工学分野におけるシミュレーション時間の短縮に役立つ可能性がある。
DeepONetは最近、PDEの学習演算子(関数空間間のマッピング)によって偏微分方程式(PDE)の解を加速する強力なツールとして登場した。
本研究では,buckley-leverett pde のフラックス関数の空間と解の空間(飽和)の間の写像について学ぶ。
我々は物理インフォームド・ディープノネット(PI-DeepONets)を用いて、与えられた初期または境界条件のセットを除いて、このマッピングをペアの入出力観測なしで実現します。
モデルトレーニング中のソフトペナルティ制約や、物理情報ニューラルネットワーク(PINN)や独自のディープニューラルネットワークアーキテクチャのような方法で、基礎となる物理法則を活用することにより、提案したPI-DeepONetモデルは、従来の数値解法よりも最大4桁の速度向上を達成しつつ、任意の種類のフラックス関数(凹凸、非凸)を正確に予測することができる。
さらに、トレーニングされたPI-DeepONetモデルは優れた一般化品質を示し、多孔質媒体における輸送問題の解決を加速するための有望なツールである。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Text2PDE: Latent Diffusion Models for Accessible Physics Simulation [7.16525545814044]
物理シミュレーションに潜時拡散モデルを適用する方法をいくつか紹介する。
提案手法は、現在のニューラルPDEソルバと、精度と効率の両面で競合することを示す。
スケーラブルで正確で使用可能な物理シミュレータを導入することで、ニューラルPDEソルバを実用化に近づけたいと思っています。
論文 参考訳(メタデータ) (2024-10-02T01:09:47Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
Hermite-Spline CNNs [4.560331122656578]
部分微分方程式 (Partial Differential Equations, PDE) は、解くのがとても難しい。
本稿では、最近登場した2つの機械学習ベースのアプローチの利点を組み合わせた新しい手法に基づいて、PDEのソリューションにアプローチすることを提案する。
論文 参考訳(メタデータ) (2021-09-15T08:10:23Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。