論文の概要: DAFE: LLM-Based Evaluation Through Dynamic Arbitration for Free-Form Question-Answering
- arxiv url: http://arxiv.org/abs/2503.08542v1
- Date: Tue, 11 Mar 2025 15:29:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:57.515453
- Title: DAFE: LLM-Based Evaluation Through Dynamic Arbitration for Free-Form Question-Answering
- Title(参考訳): DAFE:自由形式の質問応答のための動的割当てによるLCMに基づく評価
- Authors: Sher Badshah, Hassan Sajjad,
- Abstract要約: 大規模言語モデル評価のための動的アロケーションフレームワーク(DAFE)を提案する。
DAFEは2つの主要なLCM-as-judgesを採用し、不一致の場合のみ第3の仲裁を行う。
DAFEが一貫した、スケーラブルで、リソース効率の高いアセスメントを提供する能力を示す。
- 参考スコア(独自算出の注目度): 12.879551933541345
- License:
- Abstract: Evaluating Large Language Models (LLMs) free-form generated responses remains a challenge due to their diverse and open-ended nature. Traditional supervised signal-based automatic metrics fail to capture semantic equivalence or handle the variability of open-ended responses, while human evaluation, though reliable, is resource-intensive. Leveraging LLMs as evaluators offers a promising alternative due to their strong language understanding and instruction-following capabilities. Taking advantage of these capabilities, we propose the Dynamic Arbitration Framework for Evaluation (DAFE), which employs two primary LLM-as-judges and engages a third arbitrator only in cases of disagreements. This selective arbitration prioritizes evaluation reliability while reducing unnecessary computational demands compared to conventional majority voting. DAFE utilizes task-specific reference answers with dynamic arbitration to enhance judgment accuracy, resulting in significant improvements in evaluation metrics such as Macro F1 and Cohen's Kappa. Through experiments, including a comprehensive human evaluation, we demonstrate DAFE's ability to provide consistent, scalable, and resource-efficient assessments, establishing it as a robust framework for evaluating free-form model outputs.
- Abstract(参考訳): LLM(Large Language Models)の評価 自由形式の応答は、多様でオープンな性質のため、依然として課題である。
従来の教師付き信号に基づく自動メトリクスは、セマンティックな等価性を捉えたり、オープンな応答の変動を処理するのに失敗するが、人間による評価は信頼できるが、リソース集約である。
LLMを評価として活用することは、強力な言語理解と命令フォロー機能のために、有望な代替手段を提供する。
そこで我々は,2つの LLM-as-judges を用いる動的アロケーション・フレームワーク (DAFE) を提案し,不一致の場合にのみ第3の仲裁を行う。
この選択的仲裁は、従来の多数決よりも不必要な計算要求を低減しつつ評価信頼性を優先する。
DAFEはタスク固有の基準回答と動的調停を利用して判断精度を高め、マクロF1やコーエンのカッパなどの評価指標を大幅に改善する。
総合的な人的評価を含む実験を通じて、DAFEが一貫した、スケーラブルで、リソース効率の高い評価を提供する能力を示し、自由形式のモデル出力を評価するための堅牢なフレームワークとして確立する。
関連論文リスト
- The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRM) は、推論プロセスにおける中間エラーを特定し、緩和することを目的としている。
我々は,モンテカルロ (MC) 推定とLarge Language Models (LLM) を効果的に統合するコンセンサスフィルタリング機構を開発した。
私たちは、既存のオープンソース代替品よりも優れた、最先端のPRMを新たにリリースしています。
論文 参考訳(メタデータ) (2025-01-13T13:10:16Z) - EQUATOR: A Deterministic Framework for Evaluating LLM Reasoning with Open-Ended Questions. # v1.0.0-beta [2.1249213103048414]
本研究では,決定論的スコアと実測精度とロバストな推論評価に着目したEQUATOR評価器を提案する。
ベクトルデータベースを使用して、EQUATORは人間の評価された回答とオープンエンドの質問をペアリングし、より正確でスケーラブルな評価を可能にする。
この枠組みは,高精度な基準を維持しつつ,従来のマルチ選択評価を著しく上回っていることを示す。
論文 参考訳(メタデータ) (2024-12-31T03:56:17Z) - HREF: Human Response-Guided Evaluation of Instruction Following in Language Models [61.273153125847166]
我々は新しい評価ベンチマークHREF(Human Response-Guided Evaluation of Instruction following)を開発した。
HREFは信頼性の高い評価を提供するだけでなく、個々のタスクのパフォーマンスを強調し、汚染を受けない。
本稿では,評価セットのサイズ,判断モデル,ベースラインモデル,プロンプトテンプレートなど,HREFにおける鍵設計選択の影響について検討する。
論文 参考訳(メタデータ) (2024-12-20T03:26:47Z) - CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1は、最初のオープンソースのtextbfall-in-one judge LLMである。
CompassJudger-1は、優れた汎用性を示す汎用LLMである。
textbfJudgerBenchは、様々な主観評価タスクを含む新しいベンチマークである。
論文 参考訳(メタデータ) (2024-10-21T17:56:51Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
大きな言語モデル(LLM)は、人間のような会話を生成できる。
BLEUやROUGEのような従来のメトリクスは、このような生成出力の微妙な意味と文脈的な豊かさを捉えるには不十分である。
本稿では,複数のLSM-as-judgesを活用することで,評価プロセスを自動化する基準誘導型判定手法を提案する。
論文 参考訳(メタデータ) (2024-08-17T16:01:45Z) - FedEval-LLM: Federated Evaluation of Large Language Models on Downstream Tasks with Collective Wisdom [19.104850413126066]
大規模言語モデル(LLM)の協調学習のための有望なソリューションとして、フェデレートラーニング(FL)が登場した。
ラベル付きテストセットと類似度に基づくメトリクスに依存する従来の評価手法は、許容できる答えのサブセットのみをカバーする。
我々は、ラベル付きテストセットや外部ツールに依存することなく、下流タスクにおけるLCMの信頼性の高い性能測定を提供するFedEval-LLMを提案する。
論文 参考訳(メタデータ) (2024-04-18T15:46:26Z) - HD-Eval: Aligning Large Language Model Evaluators Through Hierarchical
Criteria Decomposition [92.17397504834825]
HD-Evalは、大規模な言語モデル評価ツールと人間の好みを反復的に調整するフレームワークである。
HD-Evalは、人間の専門家の評価思想から本質を継承し、LLMに基づく評価器のアライメントを強化する。
3つの評価領域に関する広範囲な実験は、HD-Evalのさらなる整合状態評価器の優位性を実証している。
論文 参考訳(メタデータ) (2024-02-24T08:01:32Z) - Aligning Large Language Models by On-Policy Self-Judgment [49.31895979525054]
大規模言語モデルと人間の嗜好を整合させる既存のアプローチは、オンライン学習のために別々の報酬モデル(RM)を必要とするトレードオフに直面しています。
本稿では,オンライン学習を行う新たなアライメントフレームワークSELF-JUDGEを提案する。
また, さらなる評価を行なわずに, サンプリング自体がさらなる性能向上に寄与することを示した。
論文 参考訳(メタデータ) (2024-02-17T11:25:26Z) - F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods [102.98899881389211]
F-Evalは、表現、常識、論理などの基本能力を評価するためのバイリンガル評価ベンチマークである。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
論文 参考訳(メタデータ) (2024-01-26T13:55:32Z) - DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and
Improvement of Large Language Models [4.953092503184905]
この研究は、LLM(Large Language Models)生成したテキストの一貫性を評価し改善する自動化フレームワークであるDCRを提案する。
本稿では,DCEからの出力を解釈可能な数値スコアに変換する自動計量変換器(AMC)を提案する。
また,本手法は出力不整合の90%近くを著しく低減し,効果的な幻覚緩和の可能性を示唆している。
論文 参考訳(メタデータ) (2024-01-04T08:34:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。