論文の概要: ResBench: Benchmarking LLM-Generated FPGA Designs with Resource Awareness
- arxiv url: http://arxiv.org/abs/2503.08823v1
- Date: Tue, 11 Mar 2025 18:54:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:40:41.794642
- Title: ResBench: Benchmarking LLM-Generated FPGA Designs with Resource Awareness
- Title(参考訳): ResBench: LLM生成FPGA設計のリソース認識によるベンチマーク
- Authors: Ce Guo, Tong Zhao,
- Abstract要約: ハードウェア記述言語(HDL)コード生成を自動化するツールとして,LLM(Large Language Models)が登場した。
資源最適化と非効率なLCM生成HDLを区別するために設計された最初のリソース指向ベンチマークであるResBenchを紹介する。
- 参考スコア(独自算出の注目度): 7.3895963946365795
- License:
- Abstract: Field-Programmable Gate Arrays (FPGAs) are widely used in modern hardware design, yet writing Hardware Description Language (HDL) code for FPGA implementation remains labor-intensive and complex. Large Language Models (LLMs) have emerged as a promising tool for automating HDL generation, but existing benchmarks for LLM HDL code generation primarily evaluate functional correctness while overlooking the critical aspect of hardware resource efficiency. Moreover, current benchmarks lack diversity, failing to capture the broad range of real-world FPGA applications. To address these gaps, we introduce ResBench, the first resource-oriented benchmark explicitly designed to differentiate between resource-optimized and inefficient LLM-generated HDL. ResBench consists of 56 problems across 12 categories, covering applications from finite state machines to financial computing. Our evaluation framework systematically integrates FPGA resource constraints, with a primary focus on Lookup Table (LUT) usage, enabling a realistic assessment of hardware efficiency. Experimental results reveal substantial differences in resource utilization across LLMs, demonstrating ResBench's effectiveness in distinguishing models based on their ability to generate resource-optimized FPGA designs.
- Abstract(参考訳): FPGA (Field-Programmable Gate Arrays) は現代のハードウェア設計において広く使われているが、FPGA実装のためのハードウェア記述言語 (HDL) のコードの記述は労働集約的で複雑である。
大規模言語モデル(LLM)は、HDL生成を自動化するための有望なツールとして登場したが、LLM HDLコード生成のための既存のベンチマークは、ハードウェアリソース効率の重要な側面を見越しながら、機能的正しさを主に評価している。
さらに、現在のベンチマークでは多様性が欠如しており、現実世界のFPGAアプリケーションの範囲を捉えていない。
これらのギャップに対処するために、リソース最適化と非効率なLCM生成HDLの区別を明示的に設計した最初のリソース指向ベンチマークであるResBenchを紹介する。
ResBenchは12のカテゴリにまたがる56の問題から成り、有限状態マシンから金融コンピューティングまでをカバーしている。
我々の評価フレームワークはFPGAリソースの制約を体系的に統合し、Lookup Table (LUT)の使用に重点を置いて、ハードウェア効率の現実的な評価を可能にする。
実験結果から,LLM間での資源利用の相違が明らかとなり,資源最適化FPGA設計の生成能力に基づいてモデルを識別するResBenchの有効性が示された。
関連論文リスト
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [14.458529723566379]
LLM(Large Language Model)は、PythonやC++などのプログラミング言語に使用される。
本稿では,LLMを利用してHLS(High-Level Synthesis)ベースのハードウェア設計を行う。
論文 参考訳(メタデータ) (2025-02-19T17:53:59Z) - HiVeGen -- Hierarchical LLM-based Verilog Generation for Scalable Chip Design [55.54477725000291]
HiVeGenは階層的なVerilog生成フレームワークで、生成タスクを階層的なサブモジュールに分解する。
自動設計空間探索(DSE)を階層対応のプロンプト生成に変換し、コードの再利用を強化するために重みに基づく検索を導入する。
エラー補正コストを低減し、生成した設計の質を大幅に向上させる。
論文 参考訳(メタデータ) (2024-12-06T19:37:53Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - Are LLMs Any Good for High-Level Synthesis? [1.3927943269211591]
大規模言語モデル(LLM)は、高レベル合成(HLS)プロセスの合理化や置き換えが可能である。
LLMは自然言語の仕様を理解し、Cコードや自然言語の仕様を翻訳することができる。
本研究の目的は、AIアクセラレーション、組み込みシステム、高性能コンピューティングなどのアプリケーションにおいて、最適化されたハードウェア設計のための将来的な方向性を特定することである。
論文 参考訳(メタデータ) (2024-08-19T21:40:28Z) - Designing Efficient LLM Accelerators for Edge Devices [1.4128048241287314]
大きな言語モデル(LLM)は、リソース制約のあるエッジデバイスにデプロイすることで、ネットワーク接続への依存を低減し、よりプライバシーを提供する。
この問題に対処するため、LLM推論のための新しい効率的なエッジアクセラレータを設計することが重要である。
本稿では,効率的なFPGAベースのLCMアクセラレータの設計,統合,展開プロセスの合理化にSECDA手法を用いるSECDA-LLMを提案する。
論文 参考訳(メタデータ) (2024-08-01T11:06:05Z) - Investigating Resource-efficient Neutron/Gamma Classification ML Models Targeting eFPGAs [0.0]
オープンソース組み込みFPGA(eFPGA)フレームワークは、ハードウェアに機械学習モデルを実装するための、代替的で柔軟な経路を提供する。
完全連結ニューラルネットワーク(fcNN)と強化決定木(BDT)モデルのeFPGA実装のパラメータ空間について検討する。
この研究結果は、テストチップの一部として統合されるeFPGAファブリックの仕様策定を支援するために使用される。
論文 参考訳(メタデータ) (2024-04-19T20:03:30Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
数十億のパラメータを誇った大規模言語モデル(LLM)は、推論ワークロードの効率的なデプロイに対する大きな需要を生み出している。
本稿では,FPGA上でのLLM推論におけるモデル固有空間加速度の実現可能性と可能性について検討する。
論文 参考訳(メタデータ) (2023-12-23T04:27:06Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark [11.575901540758574]
我々は,フィールドプログラマブルゲートアレイ(FPGA)プラットフォーム上でのTiny Inference Benchmarkの開発経験を示す。
我々は、FPGA上で最適化されたニューラルネットワークのAIハードウェアコーデックを民主化することを目的として、オープンソースのhls4mlとFINN perJを使用している。
ソリューションはシステムオンチップ(Pynq-Z2)と純粋なFPGA(Arty A7-100T)プラットフォームにデプロイされる。
論文 参考訳(メタデータ) (2022-06-23T15:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。