論文の概要: Are Convex Optimization Curves Convex?
- arxiv url: http://arxiv.org/abs/2503.10138v1
- Date: Thu, 13 Mar 2025 07:56:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:51:03.623254
- Title: Are Convex Optimization Curves Convex?
- Title(参考訳): 凸最適化曲線は凸か?
- Authors: Guy Barzilai, Ohad Shamir,
- Abstract要約: 意外なことに、答えはステップサイズの選択次第です。
意外なことに、答えはステップサイズの選択次第です。
- 参考スコア(独自算出の注目度): 33.84710024813985
- License:
- Abstract: In this paper, we study when we might expect the optimization curve induced by gradient descent to be \emph{convex} -- precluding, for example, an initial plateau followed by a sharp decrease, making it difficult to decide when optimization should stop. Although such undesirable behavior can certainly occur when optimizing general functions, might it also occur in the benign and well-studied case of smooth convex functions? As far as we know, this question has not been tackled in previous work. We show, perhaps surprisingly, that the answer crucially depends on the choice of the step size. In particular, for the range of step sizes which are known to result in monotonic convergence to an optimal value, there is a regime where the optimization curve will be provably convex, and there is a regime where the curve can be non-convex. We also extend our results to gradient flow, and to the closely-related but different question of whether the gradient norm decreases monotonically.
- Abstract(参考訳): 本稿では,勾配降下によって誘導される最適化曲線が,例えば,初期台地とそれに続く急激な減少を前提として,最適化が停止すべき時期を決定するのが困難である場合について検討する。
そのような望ましくない振る舞いは、一般函数を最適化するときに必ず起こりうるが、滑らかな凸函数の良性かつよく研究された場合においても起こり得るだろうか?
私たちが知る限りでは、この質問は以前の作業では取り組まなかった。
意外なことに、答えはステップサイズの選択に大きく依存しています。
特に、単調収束を最適値にすることが知られているステップサイズの範囲について、最適化曲線が証明可能凸となる状態があり、曲線が非凸となる状態が存在する。
また、この結果は勾配流にまで拡張し、勾配ノルムが単調に減少するかどうかという密接に関連するが異なる問題にも拡張する。
関連論文リスト
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
我々は、(強に)凸 $(L0)$-smooth 関数のクラスに焦点を当て、いくつかの既存のメソッドに対する新しい収束保証を導出する。
特に,スムーズなグラディエント・クリッピングを有するグラディエント・ディフレッシュと,ポリアク・ステップサイズを有するグラディエント・ディフレッシュのコンバージェンス・レートの改善を導出した。
論文 参考訳(メタデータ) (2024-09-23T13:11:37Z) - On the Convergence of Gradient Descent for Large Learning Rates [55.33626480243135]
固定ステップサイズを使用すると収束が不可能であることを示す。
正方形損失を持つ線形ニューラルネットワークの場合,これを証明した。
また、勾配に対するリプシッツ連続性のような強い仮定を必要とせず、より一般的な損失に対する収束の不可能性も証明する。
論文 参考訳(メタデータ) (2024-02-20T16:01:42Z) - Convex and Non-convex Optimization Under Generalized Smoothness [69.69521650503431]
凸法と非最適化法の分析は、しばしばリプシッツ勾配を必要とし、この軌道による解析を制限する。
最近の研究は、非一様滑らか性条件を通した勾配設定を一般化している。
論文 参考訳(メタデータ) (2023-06-02T04:21:59Z) - Revisiting Subgradient Method: Complexity and Convergence Beyond Lipschitz Continuity [24.45688490844496]
次進法は非滑らかな最適化のための最も基本的なアルゴリズムスキームの1つである。
本研究では、まず、非Lipschitz凸と弱凸最小化をカバーするために、下次法の典型的な反復複雑性結果を拡張する。
論文 参考訳(メタデータ) (2023-05-23T15:26:36Z) - Adaptive Approximate Implicitization of Planar Parametric Curves via
Weak Gradient Constraints [11.559302398966468]
ポリノミカル曲線と非ポリノミカル曲線に新たな正規化制約を導入する。
次に、多項式曲線と非多項式曲線の近似的暗黙化の2つの適応アルゴリズムを提案する。
より正確には、このアイデアは、出力の弱い勾配損失に明らかな改善がないまで、徐々に暗黙の度合いを増している。
論文 参考訳(メタデータ) (2023-02-23T04:08:53Z) - Generalization in Supervised Learning Through Riemannian Contraction [4.3604518673788135]
教師付き学習環境では、計量 0 がアセシアンレート $lambda で収縮している場合、それは一様に$math であることを示す。
結果は、連続および安定な $-time において、勾配と決定論的損失曲面を保っている。
それらは、Descent$凸面や強い凸損失面など、ある種の線形な設定で最適であることを示すことができる。
論文 参考訳(メタデータ) (2022-01-17T23:08:47Z) - Implicit differentiation for fast hyperparameter selection in non-smooth
convex learning [87.60600646105696]
内部最適化問題が凸であるが非滑らかである場合の一階法を研究する。
本研究では, ヤコビアンの近位勾配降下と近位座標降下収率列の前方モード微分が, 正確なヤコビアンに向かって収束していることを示す。
論文 参考訳(メタデータ) (2021-05-04T17:31:28Z) - Cyclic Coordinate Dual Averaging with Extrapolation [22.234715500748074]
単調作用素を用いた変分不等式(VI)問題の一般クラスに適用可能な新しいブロック座標法を提案する。
得られた収束境界は、全勾配法の最適収束境界と一致する。
座標ブロックが$m$の場合、我々の境界における勾配リプシッツ定数は、従来のユークリッドのリプシッツ定数と比較して$sqrtm$よりも大きくなることはない。
論文 参考訳(メタデータ) (2021-02-26T00:28:58Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Gradient-Free Methods for Saddle-Point Problem [125.99533416395765]
我々はGasnikov et al., 2017のアプローチを一般化し、不正確な勾配のないオラクルで(確率的な)凸最適化問題を解けるようにした。
我々のアプローチは、$fracnlog n$ の要求するオラクル呼び出しの回数を削減します。
論文の後半では、そのような仮定ができない場合を分析し、この問題を解決する方法の近代化方法に関する一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-12T16:44:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。