論文の概要: REdiSplats: Ray Tracing for Editable Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2503.12284v1
- Date: Sat, 15 Mar 2025 22:42:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:31:15.437945
- Title: REdiSplats: Ray Tracing for Editable Gaussian Splatting
- Title(参考訳): RediSplats: 編集可能なガウススプティングのためのレイトレーシング
- Authors: Krzysztof Byrski, Grzegorz Wilczyński, Weronika Smolak-Dyżewska, Piotr Borycki, Dawid Baran, Sławomir Tadeja, Przemysław Spurek,
- Abstract要約: レイトレーシングとメッシュによるフラットな3Dガウス表現を用いたREdiSplatsを紹介する。
実際、メッシュによってパラメータ化された平坦なガウス分布を用いてシーンをモデル化する。
BlenderやNvdiffrastといった3Dツールを使ってモデルをレンダリングすることで、既存のすべての3Dグラフィックス技術と統合することが可能になる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Gaussian Splatting (GS) has become one of the most important neural rendering algorithms. GS represents 3D scenes using Gaussian components with trainable color and opacity. This representation achieves high-quality renderings with fast inference. Regrettably, it is challenging to integrate such a solution with varying light conditions, including shadows and light reflections, manual adjustments, and a physical engine. Recently, a few approaches have appeared that incorporate ray-tracing or mesh primitives into GS to address some of these caveats. However, no such solution can simultaneously solve all the existing limitations of the classical GS. Consequently, we introduce REdiSplats, which employs ray tracing and a mesh-based representation of flat 3D Gaussians. In practice, we model the scene using flat Gaussian distributions parameterized by the mesh. We can leverage fast ray tracing and control Gaussian modification by adjusting the mesh vertices. Moreover, REdiSplats allows modeling of light conditions, manual adjustments, and physical simulation. Furthermore, we can render our models using 3D tools such as Blender or Nvdiffrast, which opens the possibility of integrating them with all existing 3D graphics techniques dedicated to mesh representations.
- Abstract(参考訳): Gaussian Splatting (GS)は、最も重要なニューラルネットワークレンダリングアルゴリズムの1つである。
GSは、トレーニング可能な色と不透明度を持つガウス成分を使用した3Dシーンを表現している。
この表現は高速な推論で高品質なレンダリングを実現する。
シャドーやライトリフレクション、手動調整、物理エンジンなど、様々な光条件でこのようなソリューションを統合するのは難しい。
近年、レイトレーシングやメッシュプリミティブをGSに組み込んで、これらの欠点に対処するアプローチがいくつか現れている。
しかし、そのような解は古典的なGSのすべての既存の極限を同時に解けない。
その結果、レイトレーシングとメッシュによる平坦な3次元ガウス表現を用いたREdiSplatsが導入された。
実際、メッシュによってパラメータ化された平坦なガウス分布を用いてシーンをモデル化する。
高速なレイトレーシングを活用し、メッシュ頂点を調整することでガウス変換を制御することができる。
さらに、REdiSplatsは光条件のモデリング、手動調整、物理シミュレーションを可能にする。
さらに、BlenderやNvdiffrastといった3Dツールを使ってモデルをレンダリングすることで、メッシュ表現専用の既存の3Dグラフィック技術と統合することが可能になる。
関連論文リスト
- MeshSplats: Mesh-Based Rendering with Gaussian Splatting Initialization [0.4543820534430523]
本稿では,ガウス的要素をメッシュ面に変換する手法であるMeshSplatsを紹介する。
我々のモデルは変換の直後に利用でき、追加のトレーニングなしでわずかに品質が低下するメッシュが得られる。
論文 参考訳(メタデータ) (2025-02-11T18:27:39Z) - RaySplats: Ray Tracing based Gaussian Splatting [6.808029514985239]
3D Gaussian Splatting(3DGS)は、2D画像から直接3Dオブジェクトを作成することができるプロセスである。
本稿では,レイトレーシングをベースとしたSplattingモデルであるRaySplatsを紹介する。
論文 参考訳(メタデータ) (2025-01-31T15:05:06Z) - 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
多視点画像から幾何学的に有意な放射場をモデル化するためのプリミティブとして3次元滑らかな凸を利用した3次元凸法(3DCS)を提案する。
3DCSは、MipNeizer, Tanks and Temples, Deep Blendingなどのベンチマークで、3DGSよりも優れたパフォーマンスを実現している。
本結果は,高品質なシーン再構築のための新しい標準となる3Dコンベクシングの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T14:31:39Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - MeshGS: Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering [61.64903786502728]
本稿では,メッシュ表現を3次元ガウススプラットと統合し,再現された現実世界のシーンの高品質なレンダリングを実現する手法を提案する。
各ガウススプレートとメッシュ表面との距離を, 密接な束縛と緩い束縛の相違点として検討した。
提案手法は,2dB高いPSNRを達成し,メッシュベースのガウス分割法を1.3dBPSNRで上回った。
論文 参考訳(メタデータ) (2024-10-11T16:07:59Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
我々は,遅延シェーディングを用いたガウススプレイティング表現のデカップリングと編集を行うDedeerredGSを紹介する。
定性的かつ定量的な実験は、新しいビューおよび編集タスクにおけるDederredGSの優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-15T01:58:54Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
我々は,超現実的な頭部アバターを作成し,それをリアルタイムにレンダリングする新しい手法を提案する。
UVマップされた3Dメッシュは滑らかな表面のシャープでリッチなテクスチャを捉えるのに使われ、3Dガウス格子は複雑な幾何学構造を表現するために用いられる。
モデル化された結果が最先端のアプローチを上回る実験を行ないました。
論文 参考訳(メタデータ) (2024-03-18T04:01:26Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3次元ガウススプラッティングは、新規なビュー合成のレンダリング速度を大幅に高速化した。
3D Gaussian Splattingの明示的な表現は、動的再構成、幾何学的編集、物理シミュレーションなどの編集作業を容易にする。
本稿では,3次元再構成,3次元編集,その他の下流アプリケーションに大まかに分類できる最近の3次元ガウス散乱法について,文献的考察を行う。
論文 参考訳(メタデータ) (2024-03-17T07:57:08Z) - GaMeS: Mesh-Based Adapting and Modification of Gaussian Splatting [7.121259735505479]
メッシュと同じようにガウス成分を修正可能なガウスメッシュスプラッティング(GaMeS)モデルを導入する。
また、メッシュ上の位置のみに基づいてガウススプレートを定義し、アニメーション中の位置、スケール、回転を自動的に調整する。
論文 参考訳(メタデータ) (2024-02-02T14:50:23Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。