論文の概要: Effective Dimension Aware Fractional-Order Stochastic Gradient Descent for Convex Optimization Problems
- arxiv url: http://arxiv.org/abs/2503.13764v1
- Date: Mon, 17 Mar 2025 22:57:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 16:29:12.150234
- Title: Effective Dimension Aware Fractional-Order Stochastic Gradient Descent for Convex Optimization Problems
- Title(参考訳): 凸最適化問題に対する分数次確率勾配の有効次元
- Authors: Mohammad Partohaghighi, Roummel Marcia, YangQuan Chen,
- Abstract要約: 2SEDFOSGD(2SED Fractional-Order Gradient Descent)はデータ駆動方式で分数指数を自動的に向上する手法である。
本研究では,この次元認識適応が分数メモリの利点を保ちながら,分数SGDでよく見られるスラジッシュな動作や不安定な動作を回避していることを示す。
- 参考スコア(独自算出の注目度): 2.5971517743176915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fractional-order stochastic gradient descent (FOSGD) leverages a fractional exponent to capture long-memory effects in optimization, yet its practical impact is often constrained by the difficulty of tuning and stabilizing this exponent. In this work, we introduce 2SED Fractional-Order Stochastic Gradient Descent (2SEDFOSGD), a novel method that synergistically combines the Two-Scale Effective Dimension (2SED) algorithm with FOSGD to automatically calibrate the fractional exponent in a data-driven manner. By continuously gauging model sensitivity and effective dimensionality, 2SED dynamically adjusts the exponent to curb erratic oscillations and enhance convergence rates. Theoretically, we demonstrate how this dimension-aware adaptation retains the benefits of fractional memory while averting the sluggish or unstable behaviors frequently observed in naive fractional SGD. Empirical evaluations across multiple benchmarks confirm that our 2SED-driven fractional exponent approach not only converges faster but also achieves more robust final performance, suggesting broad applicability for fractional-order methodologies in large-scale machine learning and related domains.
- Abstract(参考訳): 分数次確率勾配勾配(FOSGD)は、分数指数を利用して最適化における長期記憶効果を捉えるが、この指数のチューニングと安定化の困難さによって、その実用的影響は制約されることが多い。
本研究では,2SEDアルゴリズムとFOSGDを相乗的に組み合わせてデータ駆動方式で分数指数を自動調整する2SEDFOSGD法を提案する。
2SEDはモデル感度と有効次元を連続的にゲージすることで、指数を動的に調整し、不規則振動を抑制し、収束率を高める。
理論的には、この次元認識適応が分数メモリの利点を保ちながら、素数SGDでよく見られるスラジッシュな動作や不安定な動作を回避しているかを実証する。
複数のベンチマークにわたる実証的な評価により、我々の2SED駆動の分数指数アプローチはより高速に収束するだけでなく、より堅牢な最終性能も達成し、大規模機械学習および関連ドメインにおける分数次方法論の広範な適用性を示している。
関連論文リスト
- More Optimal Fractional-Order Stochastic Gradient Descent for Non-Convex Optimization Problems [2.5971517743176915]
本稿では,FOSGDとFOSGDを統合した2FOSGD法を提案する。
感度と有効次元性を追跡することにより、2SEDFOSGDは指数を動的に変調し、スラグ振動と急収束を緩和する。
論文 参考訳(メタデータ) (2025-05-05T19:27:36Z) - Enhanced Derivative-Free Optimization Using Adaptive Correlation-Induced Finite Difference Estimators [6.054123928890574]
勾配推定効率とサンプル効率の両面からDFOを向上させるアルゴリズムを開発した。
提案アルゴリズムの整合性を確立し,反復毎にサンプルのバッチを用いても,KW法やSPSA法と同じ収束率が得られることを示した。
論文 参考訳(メタデータ) (2025-02-28T08:05:54Z) - Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
重み付き雑音下でのグラディエントDescence(SGD)の収束を確実にする上での勾配正規化とクリッピングの役割について検討する。
我々の研究は、重尾雑音下でのSGDの勾配正規化の利点を示す最初の理論的証拠を提供する。
我々は、勾配正規化とクリッピングを取り入れた加速SGD変種を導入し、さらに重み付き雑音下での収束率を高めた。
論文 参考訳(メタデータ) (2024-10-21T22:40:42Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Implicit Bias and Fast Convergence Rates for Self-attention [26.766649949420746]
本稿では,変圧器の定義機構である自己注意の基本的な最適化原理について考察する。
線形分類におけるデコーダを用いた自己アテンション層における勾配ベースの暗黙バイアスを解析する。
論文 参考訳(メタデータ) (2024-02-08T15:15:09Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - SketchySGD: Reliable Stochastic Optimization via Randomized Curvature
Estimates [19.420605210427635]
SketchySGDは、サブサンプルヘッセンに対するランダム化低ランク近似を用いることで、機械学習の既存の勾配法を改善する。
固定段数を持つSketchySGDが最適の周りの小さな球に線形に収束することを理論的に示す。
条件のない設定では、最小二乗問題に対してSketchySGDはSGDよりも高速に収束することを示す。
論文 参考訳(メタデータ) (2022-11-16T01:05:41Z) - NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer [45.47667026025716]
2つの重要な要素に依存した、新しく、堅牢で、加速された反復を提案する。
NAG-GSと呼ばれる手法の収束と安定性は、まず広範に研究されている。
我々は、NAG-arityが、重量減衰を伴う運動量SGDや機械学習モデルのトレーニングのためのAdamWといった最先端の手法と競合していることを示す。
論文 参考訳(メタデータ) (2022-09-29T16:54:53Z) - Efficiency Ordering of Stochastic Gradient Descent [9.634481296779057]
我々は、任意のグラフ上のノイズやランダムウォークを含む一般的なサンプリングシーケンスによって駆動される勾配降下(SGD)アルゴリズムについて検討する。
我々は、マルコフ・チェイン・モンテカルロサンプリング器の性能を比較するためのよく分析されたツールである「効率順序付け」の概念を採用している。
論文 参考訳(メタデータ) (2022-09-15T16:50:55Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
勾配ランゲヴィン・ダイナミクスは非エプス最適化問題を解くための最も基本的なアルゴリズムの1つである。
本稿では、このタイプの2つの変種、すなわち、分散還元ランジュバンダイナミクスと再帰勾配ランジュバンダイナミクスを示す。
論文 参考訳(メタデータ) (2022-03-30T11:39:00Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - A Two-Time-Scale Stochastic Optimization Framework with Applications in Control and Reinforcement Learning [13.908826484332282]
最適化問題の解法として,新しい2段階勾配法を提案する。
最初の貢献は、提案した2時間スケール勾配アルゴリズムの有限時間複雑性を特徴づけることである。
我々は、強化学習における勾配に基づく政策評価アルゴリズムに適用する。
論文 参考訳(メタデータ) (2021-09-29T23:15:23Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Fast Margin Maximization via Dual Acceleration [52.62944011696364]
指数関数的尾の損失を持つ線形分類器を訓練するための運動量に基づく手法を提案し,解析する。
この運動量に基づく法は、最大マルジン問題の凸双対、特にこの双対にネステロフ加速度を適用することによって導出される。
論文 参考訳(メタデータ) (2021-07-01T16:36:39Z) - Stochastic Reweighted Gradient Descent [4.355567556995855]
SRG(stochastic reweighted gradient)と呼ばれる重要サンプリングに基づくアルゴリズムを提案する。
我々は、提案手法の時間とメモリオーバーヘッドに特に注意を払っています。
我々はこの発見を裏付ける実験結果を示す。
論文 参考訳(メタデータ) (2021-03-23T04:09:43Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
我々は,ゼロオーダーのオラクルにのみアクセス可能なブラックボックス設定において,逆例を生成する問題について検討する。
我々はこの設定を用いて、FGSM(Fast Gradient Sign Method)のブラックボックス版と同様に、高速な1ステップの敵攻撃を見つける。
提案手法はクエリを少なくし,現在の技術よりも攻撃成功率が高いことを示す。
論文 参考訳(メタデータ) (2020-10-08T18:36:51Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
第一次アルゴリズムを用いて,厳密な凸と滑らかな非制約最適化問題の解法について検討する。
我々は,過去の勾配を平均化し,実装が容易な小説「Recursive One-Over-T SGD」を考案した。
有限サンプル, 漸近感覚, 感覚の両面において, 最先端の性能を同時に達成できることを実証する。
論文 参考訳(メタデータ) (2020-08-28T14:46:56Z) - Hessian-Free High-Resolution Nesterov Acceleration for Sampling [55.498092486970364]
最適化のためのNesterovのAccelerated Gradient(NAG)は、有限のステップサイズを使用する場合の連続時間制限(ノイズなしの運動的ランゲヴィン)よりも優れたパフォーマンスを持つ。
本研究は, この現象のサンプリング法について検討し, 離散化により加速勾配に基づくMCMC法が得られる拡散過程を提案する。
論文 参考訳(メタデータ) (2020-06-16T15:07:37Z) - Sparse Perturbations for Improved Convergence in Stochastic Zeroth-Order
Optimization [10.907491258280608]
ゼロオーダー(SZO)手法への関心は最近、深いニューラルネットワークに対する敵対的ブラックボックス攻撃のようなブラックボックス最適化シナリオで復活している。
SZO法は、ランダムな入力ポイントで目的関数を評価する能力のみを必要とする。
本稿では,ランダム摂動の次元依存性を低減させるSZO最適化手法を提案する。
論文 参考訳(メタデータ) (2020-06-02T16:39:37Z) - On Learning Rates and Schr\"odinger Operators [105.32118775014015]
本稿では,学習率の影響に関する一般的な理論的分析を行う。
学習速度は、幅広い非ニューラルクラス関数に対してゼロとなる傾向にある。
論文 参考訳(メタデータ) (2020-04-15T09:52:37Z) - Momentum Improves Normalized SGD [51.27183254738711]
モーメントを追加することで、目的に対する大きなバッチサイズの必要性を確実に排除できることを示す。
本稿では,ResNet-50 や BERT といった大規模タスクの事前学習において,提案手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-02-09T07:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。