論文の概要: SEEK: Self-adaptive Explainable Kernel For Nonstationary Gaussian Processes
- arxiv url: http://arxiv.org/abs/2503.14785v1
- Date: Tue, 18 Mar 2025 23:30:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:22:50.118833
- Title: SEEK: Self-adaptive Explainable Kernel For Nonstationary Gaussian Processes
- Title(参考訳): SEEK:非定常ガウスプロセスのための自己適応型説明可能なカーネル
- Authors: Nima Negarandeh, Carlos Mora, Ramin Bostanabad,
- Abstract要約: 本稿では,ガウス過程を通じて複雑な非定常関数をモデル化するための学習可能なカーネルのクラスであるSEEKを紹介する。
人工ニューロンにインスパイアされたSEEKは、対称性と正の半定性を保証するための第一原理から導かれる。
包括的感度分析と比較研究を行い、我々のアプローチが設計選択の多くに対して堅牢ではないことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Gaussian processes (GPs) are powerful probabilistic models that define flexible priors over functions, offering strong interpretability and uncertainty quantification. However, GP models often rely on simple, stationary kernels which can lead to suboptimal predictions and miscalibrated uncertainty estimates, especially in nonstationary real-world applications. In this paper, we introduce SEEK, a novel class of learnable kernels to model complex, nonstationary functions via GPs. Inspired by artificial neurons, SEEK is derived from first principles to ensure symmetry and positive semi-definiteness, key properties of valid kernels. The proposed method achieves flexible and adaptive nonstationarity by learning a mapping from a set of base kernels. Compared to existing techniques, our approach is more interpretable and much less prone to overfitting. We conduct comprehensive sensitivity analyses and comparative studies to demonstrate that our approach is not robust to only many of its design choices, but also outperforms existing stationary/nonstationary kernels in both mean prediction accuracy and uncertainty quantification.
- Abstract(参考訳): ガウス過程(英: Gaussian process、GP)は、関数上の柔軟な事前を定義する強力な確率モデルであり、強い解釈可能性と不確実な定量化を提供する。
しかし、GPモデルは単純で定常的なカーネルに依存しており、特に非定常的な現実世界の応用において、最適以下の予測や不確実性の推定に繋がることがある。
本稿では,GPを用いた複雑な非定常関数をモデル化するための,学習可能なカーネルの新たなクラスであるSEEKを紹介する。
人工ニューロンにインスパイアされたSEEKは、対称性と正の半定性を保証するための第一原理から導かれる。
提案手法は,ベースカーネルの集合からマッピングを学習することにより,柔軟で適応的な非定常性を実現する。
既存の手法と比較して、我々のアプローチは解釈可能であり、過度に適合する傾向がある。
我々は、我々のアプローチが設計選択の多くに対して堅牢であるだけでなく、予測精度と不確かさの両面で既存の定常/非定常カーネルよりも優れていることを示すために、包括的な感度解析と比較研究を実施している。
関連論文リスト
- Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data [2.8377382540923004]
ガウス過程(英: Gaussian process, GP)は、暗黙的な不確実性特徴を持つ機械学習手法である。
従来のGPの実装には、その柔軟性を制限する固定化されたカーネルが含まれる。
スパーシリティと非定常性の両方を発見およびエンコードできる代替カーネルを導出する。
論文 参考訳(メタデータ) (2024-11-07T20:07:21Z) - Revisiting the Equivalence of Bayesian Neural Networks and Gaussian Processes: On the Importance of Learning Activations [1.0468715529145969]
トレーニング可能なアクティベーションは、広範囲なBNNに対するGP前の効果的なマッピングに不可欠であることを示す。
また、設計によるグローバルな定常性を確保するためのトレーニング可能な周期的アクティベーションも導入する。
論文 参考訳(メタデータ) (2024-10-21T08:42:10Z) - A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian Processes [0.9558392439655016]
代表データセットを用いて動作中のさまざまなカーネルを示し、その特性を慎重に研究し、性能を比較する。
そこで本研究では,既存のカーネルの利点を活かしたカーネルを提案する。
論文 参考訳(メタデータ) (2023-09-18T18:34:51Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
オフラインデータ(Meta-KeL)からカーネルをメタ学習することを提案する。
穏やかな条件下では、推定されたRKHSが有効な信頼セットを得られることを保証します。
また,ベイズ最適化におけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2022-02-01T17:46:51Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Towards Unbiased Random Features with Lower Variance For Stationary
Indefinite Kernels [26.57122949130266]
本アルゴリズムは,既存のカーネル近似法と比較して,より低い分散と近似誤差を達成する。
もともと選択されたカーネルの近似性が向上し、分類精度と回帰能力が向上する。
論文 参考訳(メタデータ) (2021-04-13T13:56:50Z) - Advanced Stationary and Non-Stationary Kernel Designs for Domain-Aware
Gaussian Processes [0.0]
再生カーネルヒルベルト空間(RKHS)の要素である所望の特性を持つ関数のみを許容する先進カーネル設計を提案する。
いくつかの合成および2つの科学的データセットを用いて、先進的なカーネル設計がガウス過程に与える影響を示す。
論文 参考訳(メタデータ) (2021-02-05T22:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。