論文の概要: Nonlinear Bayesian Update via Ensemble Kernel Regression with Clustering and Subsampling
- arxiv url: http://arxiv.org/abs/2503.15160v1
- Date: Wed, 19 Mar 2025 12:35:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:22:36.265371
- Title: Nonlinear Bayesian Update via Ensemble Kernel Regression with Clustering and Subsampling
- Title(参考訳): クラスタリングとサブサンプリングによるエンサンブルカーネル回帰による非線形ベイズ更新
- Authors: Yoonsang Lee,
- Abstract要約: 我々は,従来のアンサンブル・カルマンフィルタを,非ガウス先行と非線形測定演算子を特徴とする設定に拡張することを提案する。
このフレームワークでは、観測されたコンポーネントは、まず標準カルマン更新によって分極されるが、観測されていないコンポーネントは非線形回帰法を用いて推定される。
- 参考スコア(独自算出の注目度): 0.87024326813104
- License:
- Abstract: Nonlinear Bayesian update for a prior ensemble is proposed to extend traditional ensemble Kalman filtering to settings characterized by non-Gaussian priors and nonlinear measurement operators. In this framework, the observed component is first denoised via a standard Kalman update, while the unobserved component is estimated using a nonlinear regression approach based on kernel density estimation. The method incorporates a subsampling strategy to ensure stability and, when necessary, employs unsupervised clustering to refine the conditional estimate. Numerical experiments on Lorenz systems and a PDE-constrained inverse problem illustrate that the proposed nonlinear update can reduce estimation errors compared to standard linear updates, especially in highly nonlinear scenarios.
- Abstract(参考訳): 先行アンサンブルに対する非線形ベイズ的更新は、従来のアンサンブルカルマンフィルタを非ガウス的先行と非線形測定演算子によって特徴づけられる設定に拡張するために提案される。
このフレームワークでは、観測されたコンポーネントは、まず標準カルマン更新によって分極されるが、観測されていないコンポーネントは、カーネル密度推定に基づく非線形回帰手法を用いて推定される。
この手法は、安定性を確保するためのサブサンプリング戦略を取り入れ、必要に応じて教師なしクラスタリングを用いて条件推定を洗練させる。
LorenzシステムとPDE制約の逆問題に関する数値実験により、提案した非線形更新は、特に高非線形シナリオにおいて、標準的な線形更新と比較して推定誤差を低減できることを示した。
関連論文リスト
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
共形予測フレームワークと量子レグレッションに基づく分布自由な新しい手法を提案する。
グラフ深層学習演算子に基づく新しい共形予測手法を導入することにより,この空白を埋める。
我々のアプローチは、関連するベンチマークにおいて、正確なカバレッジを提供し、最先端の不確実性定量化をアーカイブする。
論文 参考訳(メタデータ) (2025-02-13T16:12:17Z) - Nonlinear Assimilation via Score-based Sequential Langevin Sampling [5.107329143106734]
本稿ではスコアベースシーケンシャルランゲヴィンサンプリング(SSLS)を提案する。
提案手法は,同化過程を交互に予測・更新ステップに分解する。
特定の条件下での総変動(TV)距離におけるSSLS収束の理論的保証を提供する。
論文 参考訳(メタデータ) (2024-11-20T16:31:46Z) - Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression [0.0]
本研究では,ベイズフレームワークにおける過パラメータ化非線形回帰の予測特性について検討した。
リプシッツ連続活性化関数を持つ一般化線形および単一ニューロンモデルに対して後部収縮が成立する。
提案手法は数値シミュレーションと実データアプリケーションを用いて検証した。
論文 参考訳(メタデータ) (2024-04-06T04:22:48Z) - Estimation Sample Complexity of a Class of Nonlinear Continuous-time Systems [0.0]
本稿では, 大規模非線形系のパラメータ推定法について述べる。
正規化線形回帰を用いて力学を直接反転させることにより未知パラメータを解く手法は、微分フィルタと正規化最小二乗の新たな設計と解析のアイデアに基づいている。
論文 参考訳(メタデータ) (2023-12-08T21:42:11Z) - Dynamic selection of p-norm in linear adaptive filtering via online
kernel-based reinforcement learning [8.319127681936815]
本研究は, 線形適応フィルタリングにおいて, 最適p-ノルムが外れ値と競合する問題に対して, 動的に選択する問題に対処する。
オンラインおよびデータ駆動型フレームワークはカーネルベース強化学習(KBRL)によって設計される
論文 参考訳(メタデータ) (2022-10-20T14:49:39Z) - Benign overfitting and adaptive nonparametric regression [71.70323672531606]
本研究では,データポイントを高い確率で補間する連続関数である推定器を構築する。
我々は未知の滑らかさに適応してH"古いクラスのスケールにおいて平均2乗リスクの下で最小値の最適速度を得る。
論文 参考訳(メタデータ) (2022-06-27T14:50:14Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Concurrent Learning Based Tracking Control of Nonlinear Systems using
Gaussian Process [2.7930955543692817]
本稿では,パラメータ推定ツールとしての並列学習と,オンライン外乱学習における非パラメトリックガウス過程の適用性を示す。
制御法則は、フィードバック線形化の文脈において、両方の手法を逐次的に用いて開発される。
n階系の閉ループ系安定性はリャプノフ安定性定理を用いて証明される。
論文 参考訳(メタデータ) (2021-06-02T02:59:48Z) - GradientDICE: Rethinking Generalized Offline Estimation of Stationary
Values [75.17074235764757]
対象ポリシーの状態分布とサンプリング分布の密度比を推定するグラディエントDICEを提案する。
GenDICEはそのような密度比を推定するための最先端技術である。
論文 参考訳(メタデータ) (2020-01-29T22:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。