論文の概要: Malliavin Calculus for Score-based Diffusion Models
- arxiv url: http://arxiv.org/abs/2503.16917v2
- Date: Thu, 15 May 2025 08:12:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 14:06:36.235627
- Title: Malliavin Calculus for Score-based Diffusion Models
- Title(参考訳): スコアベース拡散モデルに対するMalliavin計算法
- Authors: Ehsan Mirafzali, Utkarsh Gupta, Patrick Wyrod, Frank Proske, Daniele Venturi, Razvan Marinescu,
- Abstract要約: スコア関数 $nabla log p_t(x)$ の正確な解析式を導出する。
提案手法は複数の生成タスクにまたがって評価され,その性能は最先端の手法に匹敵することがわかった。
- 参考スコア(独自算出の注目度): 4.8357445794151594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new framework based on Malliavin calculus to derive exact analytical expressions for the score function $\nabla \log p_t(x)$, i.e., the gradient of the log-density associated with the solution to stochastic differential equations (SDEs). Our approach combines classical integration-by-parts techniques with modern stochastic analysis tools, such as Bismut's formula and Malliavin calculus, and it works for both linear and nonlinear SDEs. In doing so, we establish a rigorous connection between the Malliavin derivative, its adjoint, the Malliavin divergence (Skorokhod integral), and diffusion generative models, thereby providing a systematic method for computing $\nabla \log p_t(x)$. In the linear case, we present a detailed analysis showing that our formula coincides with the analytical score function derived from the solution of the Fokker--Planck equation. For nonlinear SDEs with state-independent diffusion coefficients, we derive a closed-form expression for $\nabla \log p_t(x)$. We evaluate the proposed framework across multiple generative tasks and find that its performance is comparable to state-of-the-art methods. These results can be generalised to broader classes of SDEs, paving the way for new score-based diffusion generative models.
- Abstract(参考訳): 我々は、スコア関数 $\nabla \log p_t(x)$, すなわち、確率微分方程式(SDE)の解に付随する対数密度の勾配について、正確な解析式を導出するために、Malliavin計算に基づく新しいフレームワークを導入する。
提案手法は古典的積分法とビスムートの公式やマリアビン計算のような現代の確率解析ツールを組み合わせており、線形および非線形のSDEでも機能する。
そうすることで、マリアビン微分、その随伴元、マリアビン発散(スコロホート積分)および拡散生成モデルの間の厳密な接続を確立し、$\nabla \log p_t(x)$を計算するための体系的な方法を提供する。
線形の場合、我々の公式はフォッカー・プランク方程式の解から導かれる解析的スコア関数と一致することを示す詳細な解析を行う。
状態非依存拡散係数を持つ非線形SDEに対しては、$\nabla \log p_t(x)$ の閉形式式を導出する。
提案手法は複数の生成タスクにまたがって評価され,その性能は最先端の手法に匹敵することがわかった。
これらの結果はより広範なSDEのクラスに一般化することができ、新しいスコアベース拡散生成モデルへの道を開くことができる。
関連論文リスト
- Principled model selection for stochastic dynamics [0.0]
PASTISは、確率推定統計と極値理論を組み合わせて超流動パラメータを抑圧する原理的手法である。
サンプリング率や測定誤差が低い場合でも、最小限のモデルを確実に識別する。
これは偏微分方程式に適用され、生態ネットワークや反応拡散力学にも適用される。
論文 参考訳(メタデータ) (2025-01-17T18:23:16Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Wasserstein proximal operators describe score-based generative models
and resolve memorization [12.321631823103894]
We first formulate SGMs with terms of Wasserstein proximal operator (WPO)
We show that WPO describe the inductive bias of diffusion and score-based model。
本稿では,SGMの性能を劇的に向上させる,スコア関数の解釈可能なカーネルベースモデルを提案する。
論文 参考訳(メタデータ) (2024-02-09T03:33:13Z) - Closing the ODE-SDE gap in score-based diffusion models through the
Fokker-Planck equation [0.562479170374811]
スコアベース拡散モデルのトレーニング時に生じる力学と近似の範囲を厳密に記述する。
従来のスコアベース拡散モデルでは, ODE-とSDE-誘導分布に有意な差が認められることを示す。
論文 参考訳(メタデータ) (2023-11-27T16:44:50Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
定常密度が干渉下でのシステムの挙動をモデル化する微分方程式を学習する。
古典的アプローチよりもよく、変数に対する見当たらない介入を一般化することを示します。
提案手法は,再生カーネルヒルベルト空間における拡散発生器の定常状態を表す新しい理論結果に基づく。
論文 参考訳(メタデータ) (2023-10-26T14:01:17Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Score-based Generative Modeling Through Backward Stochastic Differential
Equations: Inversion and Generation [6.2255027793924285]
提案したBSDEベースの拡散モデルは、機械学習における微分方程式(SDE)の適用を拡大する拡散モデリングの新しいアプローチを示す。
モデルの理論的保証、スコアマッチングにリプシッツネットワークを用いることの利点、および拡散反転、条件拡散、不確実性定量化など様々な分野への応用の可能性を示す。
論文 参考訳(メタデータ) (2023-04-26T01:15:35Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Approximate Latent Force Model Inference [1.3927943269211591]
潜在力モデルは、動的システムにおける推論のための純粋にデータ駆動ツールの解釈可能な代替手段を提供する。
ニューラルネットワークのアプローチは、モデルを数千のインスタンスにスケールし、高速で分散的な計算を可能にします。
論文 参考訳(メタデータ) (2021-09-24T09:55:00Z) - Stationary Density Estimation of It\^o Diffusions Using Deep Learning [6.8342505943533345]
離散時間系列からのエルゴード的伊藤拡散の定常測度に関連する密度推定問題を考察する。
我々は深層ニューラルネットワークを用いてSDEのドリフトと拡散の項を近似する。
我々は、適切な数学的仮定の下で提案されたスキームの収束を確立する。
論文 参考訳(メタデータ) (2021-09-09T01:57:14Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。