論文の概要: Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations
- arxiv url: http://arxiv.org/abs/2207.10241v2
- Date: Fri, 22 Jul 2022 01:55:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-25 09:14:41.749506
- Title: Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations
- Title(参考訳): 剛性偏微分方程式に対する教師なしガレルキンニューラルネットワーク
- Authors: Junho Choi, Namjung Kim and Youngjoon Hong
- Abstract要約: 本稿では,Regendre-Galerkinニューラルネットワークに基づく教師なし機械学習アルゴリズムを提案する。
提案したニューラルネットワークは、境界層挙動を有する特異摂動PDEと同様に、一般的な1Dおよび2DPDEに適用される。
- 参考スコア(独自算出の注目度): 9.659504024299896
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning methods have been lately used to solve differential
equations and dynamical systems. These approaches have been developed into a
novel research field known as scientific machine learning in which techniques
such as deep neural networks and statistical learning are applied to classical
problems of applied mathematics. Because neural networks provide an
approximation capability, computational parameterization through machine
learning and optimization methods achieve noticeable performance when solving
various partial differential equations (PDEs). In this paper, we develop a
novel numerical algorithm that incorporates machine learning and artificial
intelligence to solve PDEs. In particular, we propose an unsupervised machine
learning algorithm based on the Legendre-Galerkin neural network to find an
accurate approximation to the solution of different types of PDEs. The proposed
neural network is applied to the general 1D and 2D PDEs as well as singularly
perturbed PDEs that possess boundary layer behavior.
- Abstract(参考訳): 近年、微分方程式や力学系の解法として機械学習が用いられている。
これらのアプローチは、深層ニューラルネットワークや統計的学習といった手法を応用数学の古典問題に適用する科学機械学習として知られる新しい研究分野へと発展してきた。
ニューラルネットワークは近似能力を提供するため、機械学習と最適化手法による計算パラメータ化は、様々な偏微分方程式(PDE)を解く際に顕著な性能を達成する。
本稿では,機械学習と人工知能を組み込んだ新しい数値アルゴリズムを開発し,PDEの解法を提案する。
特に,Regendre-Galerkinニューラルネットワークに基づく教師なし機械学習アルゴリズムを提案し,異なるタイプのPDEの解に対する正確な近似を求める。
提案したニューラルネットワークは、境界層挙動を有する特異摂動PDEと同様に、一般的な1Dおよび2DPDEに適用される。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Newton Informed Neural Operator for Computing Multiple Solutions of Nonlinear Partials Differential Equations [3.8916312075738273]
非線形性に対処するNewton Informed Neural Operatorを提案する。
提案手法は,古典的ニュートン法を組み合わせ,適切な問題に対処し,一つの学習過程において複数の解を効率的に学習する。
論文 参考訳(メタデータ) (2024-05-23T01:52:54Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Deep Learning Methods for Partial Differential Equations and Related
Parameter Identification Problems [1.7150329136228712]
偏微分方程式(PDE)の特定のクラスを解決するために、ますます多くのニューラルネットワークアーキテクチャが開発されている。
このような手法は、PDE固有の特性を利用して、標準フィードフォワードニューラルネットワーク、リカレントニューラルネットワーク、畳み込みニューラルネットワークよりも優れたPDEを解決する。
これは、パラメトリックPDEが科学や工学で生じるほとんどの自然および物理的プロセスのモデル化に広く使われている数学モデリングの領域に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-12-06T16:53:34Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - A deep learning theory for neural networks grounded in physics [2.132096006921048]
ニューロモルフィックアーキテクチャ上で大規模で高速で効率的なニューラルネットワークを構築するには、それらを実装および訓練するためのアルゴリズムを再考する必要がある。
私たちのフレームワークは、非常に幅広いモデル、すなわち状態やダイナミクスが変動方程式によって記述されるシステムに適用されます。
論文 参考訳(メタデータ) (2021-03-18T02:12:48Z) - Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems [40.20472268839781]
我々は、統計物理学における反応拡散方程式、量子力学におけるシュル・オーディンガー方程式、同軸光学におけるヘルムホルツ方程式を一般化する。
数値解を求めるためにNPDEを離散化するために有限差分法を用いる。
多層パーセプトロン、畳み込みニューラルネットワーク、リカレントニューラルネットワークなど、ディープニューラルネットワークアーキテクチャの基本構築ブロックが生成される。
論文 参考訳(メタデータ) (2021-03-10T00:05:46Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
偏微分方程式 (Partial differential equation, PDE) は、科学や工学における多くの問題を研究する上で重要な役割を果たしている。
本稿では,時間依存型PDEシステムのルールを自動的に学習する,Neural-PDEと呼ばれるシーケンス深層学習フレームワークを提案する。
我々の実験では、ニューラルPDEは20時間以内のトレーニングで効率よく力学を抽出し、正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-09-08T15:46:00Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。