論文の概要: Will LLMs be Professional at Fund Investment? DeepFund: A Live Arena Perspective
- arxiv url: http://arxiv.org/abs/2503.18313v2
- Date: Thu, 26 Jun 2025 03:57:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 13:31:57.672109
- Title: Will LLMs be Professional at Fund Investment? DeepFund: A Live Arena Perspective
- Title(参考訳): LLMは投資のプロフェッショナルになるか? DeepFund: ライブアリーナの展望
- Authors: Changlun Li, Yao Shi, Yuyu Luo, Nan Tang,
- Abstract要約: 大規模言語モデル(LLM)は、様々な領域にまたがって印象的な能力を示してきたが、財務的な意思決定におけるその効果は、いまだに不十分である。
実環境におけるLCMベースのトレーディング戦略を評価するための総合的なアリーナプラットフォームであるDeepFundを紹介する。
当社のアプローチでは,実世界の投資決定プロセスを実現する上で,複数の重要な役割を担うマルチエージェントフレームワークを実装している。
- 参考スコア(独自算出の注目度): 10.932591941137698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, but their effectiveness in financial decision-making remains inadequately evaluated. Current benchmarks primarily assess LLMs' understanding on financial documents rather than the ability to manage assets or dig out trading opportunities in dynamic market conditions. Despite the release of new benchmarks for evaluating diversified tasks on the financial domain, we identified four major problems in these benchmarks, which are data leakage, navel-gazing, over-intervention, and maintenance-hard. To pave the research gap, we introduce DeepFund, a comprehensive arena platform for evaluating LLM-based trading strategies in a live environment. Our approach implements a multi-agent framework where they serve as multiple key roles that realize the real-world investment decision processes. Moreover, we provide a web interface that visualizes LLMs' performance with fund investment metrics across different market conditions, enabling detailed comparative analysis. Through DeepFund, we aim to provide a more realistic and fair assessment on LLM's capabilities in fund investment, offering diversified insights and revealing their potential applications in real-world financial markets. Our code is publicly available at https://github.com/HKUSTDial/DeepFund.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域にまたがって印象的な能力を示してきたが、財務的な意思決定におけるその効果は、いまだに不十分である。
現在のベンチマークでは、資産を管理したり、ダイナミックな市場の状況で取引機会を掘り下げたりするのではなく、LLMの財務文書に対する理解を主に評価している。
金融分野におけるタスクの多様化を評価するための新たなベンチマークがリリースされたにも拘わらず、これらのベンチマークではデータ漏洩、目障りなギャージング、過度な介入、メンテナンスハードの4つの大きな問題を特定した。
研究ギャップを埋めるため,ライブ環境におけるLLMベースのトレーディング戦略を評価するための総合的なプラットフォームであるDeepFundを紹介した。
当社のアプローチでは,実世界の投資決定プロセスを実現する上で,複数の重要な役割を担うマルチエージェントフレームワークを実装している。
さらに,LLMのパフォーマンスを様々な市場状況にまたがる投資指標を用いて可視化し,詳細な比較分析を可能にするWebインターフェースを提供する。
DeepFundを通じて、ファンド投資におけるLLMの能力についてより現実的で公正な評価を提供し、多様な洞察を提供し、現実世界の金融市場におけるそれらの潜在的な応用を明らかにすることを目指している。
私たちのコードはhttps://github.com/HKUSTDial/DeepFund.comで公開されています。
関連論文リスト
- Bridging Language Models and Financial Analysis [49.361943182322385]
大規模言語モデル(LLM)の急速な進歩は、自然言語処理における変換可能性の解放をもたらした。
財務データは、しばしばテキストコンテンツ、数値表、および視覚チャートの複雑な関係に埋め込まれる。
LLM研究における急速なイノベーションのペースにもかかわらず、金融業界における彼らの実践的採用には大きなギャップが残っている。
論文 参考訳(メタデータ) (2025-03-14T01:35:20Z) - AI in Investment Analysis: LLMs for Equity Stock Ratings [0.2916558661202724]
本稿では,Large Language Models (LLMs) のマルチ水平ストックレーティングへの適用について検討する。
本研究は、LLMを活用して株価評価の精度と一貫性を向上させることで、これらの課題に対処する。
提案手法は,フォワードリターンで評価した場合,従来の株価評価手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-30T15:06:57Z) - Financial Statement Analysis with Large Language Models [0.0]
我々はGPT4に標準化された匿名の財務文書を提供し、モデルを解析するように指示する。
このモデルでは、財務アナリストが収益の変化を予測できる能力を上回っている。
GPTの予測に基づく貿易戦略は、他のモデルに基づく戦略よりもシャープ比とアルファ率が高い。
論文 参考訳(メタデータ) (2024-07-25T08:36:58Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - The Economic Implications of Large Language Model Selection on Earnings and Return on Investment: A Decision Theoretic Model [0.0]
我々は、異なる言語モデルによる金銭的影響を比較するために、決定論的アプローチを用いる。
この研究は、より高価なモデルの優れた精度が、特定の条件下でどのようにしてより大きな投資を正当化できるかを明らかにしている。
この記事では、テクノロジの選択を最適化しようとしている企業のためのフレームワークを提供する。
論文 参考訳(メタデータ) (2024-05-27T20:08:41Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Revolutionizing Finance with LLMs: An Overview of Applications and Insights [45.660896719456886]
ChatGPTのような大規模言語モデル(LLM)はかなり進歩しており、様々な分野に適用されている。
これらのモデルは、財務報告の自動生成、市場のトレンド予測、投資家の感情分析、パーソナライズされた財務アドバイスの提供に利用されています。
論文 参考訳(メタデータ) (2024-01-22T01:06:17Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
論文 参考訳(メタデータ) (2023-10-06T05:40:23Z) - Large Language Models in Finance: A Survey [12.243277149505364]
大規模言語モデル(LLM)は、金融における人工知能応用の新しい可能性を開いた。
大規模言語モデル(LLM)の最近の進歩は、金融における人工知能応用の新しい可能性を開いた。
論文 参考訳(メタデータ) (2023-09-28T06:04:04Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。