Leveraging Quantum Computing for Accelerated Classical Algorithms in Power Systems Optimization
- URL: http://arxiv.org/abs/2503.19112v1
- Date: Mon, 24 Mar 2025 19:59:36 GMT
- Title: Leveraging Quantum Computing for Accelerated Classical Algorithms in Power Systems Optimization
- Authors: Rosemary Barrass, Harsha Nagarajan, Carleton Coffrin,
- Abstract summary: This work presents a novel hybrid algorithm that leverages quantum and classical computing to solve Unit Commitment (UC) problems.<n>We introduce a novel Benders-cut generation technique for UC, thereby enhancing cut quality, reducing expensive quantum-classical hardware interactions, and lowering qubit requirements.<n>Results from both a simulated annealer and real QAH are compared, demonstrating the effectiveness of this algorithm in reducing qubit requirements and producing near-optimal solutions on noisy QAH.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent advent of commercially available quantum annealing hardware (QAH) has expanded opportunities for research into quantum annealing-based algorithms. In the domain of power systems, this advancement has driven increased interest in applying such algorithms to mixed-integer problems (MIP) like Unit Commitment (UC). UC focuses on minimizing power generator operating costs while adhering to physical system constraints. Grid operators solve UC instances daily to meet power demand and ensure safe grid operations. This work presents a novel hybrid algorithm that leverages quantum and classical computing to solve UC more efficiently. We introduce a novel Benders-cut generation technique for UC, thereby enhancing cut quality, reducing expensive quantum-classical hardware interactions, and lowering qubit requirements. Additionally, we incorporate a $k$-local neighborhood search technique as a recovery step to ensure a higher quality solution than current QAH alone can achieve. The proposed algorithm, QC4UC, is evaluated on a modified instance of the IEEE RTS-96 test system. Results from both a simulated annealer and real QAH are compared, demonstrating the effectiveness of this algorithm in reducing qubit requirements and producing near-optimal solutions on noisy QAH.
Related papers
- CutQAS: Topology-aware quantum circuit cutting via reinforcement learning [0.0]
We propose CutQAS, a framework that integrates quantum circuit cutting with quantum architecture search (QAS) to enhance quantum chemistry simulations.
First, an RL agent explores all possible topologies to identify an optimal circuit structure. Subsequently, a second RL agent refines the selected topology by determining optimal circuit cuts, ensuring efficient execution on constrained hardware.
arXiv Detail & Related papers (2025-04-05T13:13:50Z) - Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms [0.0]
We develop a theoretical model to analyze the time complexity, scalability, and communication overhead in hybrid systems.
We evaluate QAOA's performance on small-scale Max-Cut instances, benchmarking its runtime, solution accuracy, and resource utilization.
arXiv Detail & Related papers (2024-10-21T04:10:54Z) - A hybrid Quantum-Classical Algorithm for Mixed-Integer Optimization in Power Systems [0.0]
We present a framework for solving power system optimization problems with a Quantum Computer (QC)
Our guiding applications are the optimal transmission switching and the verification of neural networks trained to solve a DC Optimal Power Flow.
arXiv Detail & Related papers (2024-04-16T16:11:56Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Evaluating the Practicality of Quantum Optimization Algorithms for
Prototypical Industrial Applications [44.88678858860675]
We investigate the application of the quantum approximate optimization algorithm (QAOA) and the quantum adiabatic algorithm (QAA) to the solution of a prototypical model in this field.
We compare the performance of these two algorithms in terms of solution quality, using selected evaluation metrics.
arXiv Detail & Related papers (2023-11-20T09:09:55Z) - Exponential Quantum Speedup for Simulation-Based Optimization Applications [4.302408747749262]
We focus on the LinQuSO subclass of QuSO, which is characterized by the linearity of the simulation problem.
We prove that a large subgroup of LinQuSO problems can be solved with up to exponential quantum speedups with regards to their simulation component.
arXiv Detail & Related papers (2023-05-15T09:32:51Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - An investigation of IBM Quantum Computing device performance on
Combinatorial Optimisation Problems [0.0]
This paper juxtaposes classical and quantum optimisation algorithms' performance to solve two common COP, the Travelling Salesman Problem (TSP) and the Quadratic Assignment Problem (QAP)
Two accepted classical optimisation methods, Branch and Bound (BNB) and Simulated Annealing (SA), are compared to two quantum optimisation methods, Variational Quantum Eigensolver (VQE) algorithm and Quantum Approximate optimisation Algorithm (QAOA)
Our results show that the VQE performs better than QAOA for these metrics, and we infer that this is due to the increased number of operations required.
arXiv Detail & Related papers (2021-07-08T07:02:50Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.