論文の概要: DeepRV: Accelerating spatiotemporal inference with pre-trained neural priors
- arxiv url: http://arxiv.org/abs/2503.21473v2
- Date: Fri, 17 Oct 2025 16:20:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 15:58:54.324489
- Title: DeepRV: Accelerating spatiotemporal inference with pre-trained neural priors
- Title(参考訳): DeepRV: 事前学習した神経前駆体を用いた時空間推定の高速化
- Authors: Jhonathan Navott, Daniel Jenson, Seth Flaxman, Elizaveta Semenova,
- Abstract要約: 我々は、ハイパーRV推定を含む完全なGP精度と密に一致したニューラルネットワークサロゲートであるDeepRVを紹介する。
シミュレーションされたベンチマーク全体を通じて、DeepRVは非分離プログラミングを達成し、ロンドンの教育不足に対する現実世界の応用を実現している。
すべての実験は、1つのコンシューマグレードのGPU上で実行され、実践者のアクセシビリティを保証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian Processes (GPs) provide a flexible and statistically principled foundation for modelling spatiotemporal phenomena, but their $O(N^3)$ scaling makes them intractable for large datasets. Approximate methods such as variational inference (VI), inducing points (sparse GPs), low-rank factorizations (RFFs), local factorizations and approximations (INLA), improve scalability but trade off accuracy or flexibility. We introduce DeepRV, a neural-network surrogate that closely matches full GP accuracy including hyperparameter estimates, while reducing computational complexity to $O(N^2)$, increasing scalability and inference speed. DeepRV serves as a drop-in replacement for GP prior realisations in e.g. MCMC-based probabilistic programming pipelines, preserving full model flexibility. Across simulated benchmarks, non-separable spatiotemporal GPs, and a real-world application to education deprivation in London (n = 4,994 locations), DeepRV achieves the highest fidelity to exact GPs while substantially accelerating inference. Code is provided in the accompanying ZIP archive, with all experiments run on a single consumer-grade GPU to ensure accessibility for practitioners.
- Abstract(参考訳): ガウス過程(GP)は時空間現象をモデル化するためのフレキシブルで統計的に原理化された基礎を提供するが、その$O(N^3)$スケーリングは大きなデータセットに対して引き付けることができる。
変分推論 (VI) のような近似手法では、点(少数GP)、低ランク因数分解(RFF)、局所因数分解と近似(INLA)、スケーラビリティの向上、正確性や柔軟性のトレードオフがある。
計算複雑性を$O(N^2)$に減らし,スケーラビリティと推論速度を増大させるとともに,超パラメータ推定を含む完全なGP精度と密に一致したニューラルネットワークサロゲートであるDeepRVを導入する。
DeepRVは、例えばMCMCベースの確率的プログラミングパイプラインにおけるGP事前実現の代替として機能し、完全なモデルの柔軟性を保っている。
シミュレーションベンチマーク、非分離型時空間GP、およびロンドンにおける教育の欠落(n=4,994箇所)に対する実世界の応用、DeepRVは正確なGPに対して高い忠実性を達成し、推論を大幅に加速する。
コードは付随するZIPアーカイブで提供され、すべての実験は1つのコンシューマグレードのGPU上で実行され、実践者のアクセシビリティを保証する。
関連論文リスト
- A Bayesian Approach to Data Point Selection [24.98069363998565]
データポイントの選択(DPS)は、ディープラーニングにおいて重要なトピックになりつつある。
既存のDPSへのアプローチは、主にバイレベル最適化(BLO)の定式化に基づいている。
DPSに対する新しいベイズ的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-06T09:04:13Z) - Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
本稿では,高次元量子化予測のための確率論的機械学習手法を提案する。
擬似ベイズ的フレームワークとスケールした学生tとランゲヴィン・モンテカルロを併用して効率的な計算を行う。
その効果はシミュレーションや実世界のデータを通じて検証され、そこでは確立された頻繁な手法やベイズ的手法と競合する。
論文 参考訳(メタデータ) (2024-09-03T08:01:01Z) - Variational Bayes image restoration with compressive autoencoders [4.879530644978008]
逆問題の正規化は、計算イメージングにおいて最重要となる。
本研究では,まず,最先端生成モデルの代わりに圧縮型オートエンコーダを提案する。
第2の貢献として、変分ベイズ潜時推定(VBLE)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-11-29T15:49:31Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation [44.53678257757108]
目的関数の大域的最適値にサブ線形収束できる新しいBO法を提案する。
本手法では,BOプロセスにランダムなデータポイントを追加するために,マルチアームバンディット法 (EXP3) を用いる。
提案手法は, 様々な合成および実世界の問題に対して, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-12T03:35:45Z) - PriorCVAE: scalable MCMC parameter inference with Bayesian deep
generative modelling [12.820453440015553]
近年、可変オートエンコーダ(VAE)のような深層生成モデルを用いてGPプリエントを符号化できることが示されている。
MCMC推論において、VAEが元のプリミティブのドロップイン置換としてどのように機能するかを示す。
ODEの解を符号化するために、PresideCVAEを提案する。
論文 参考訳(メタデータ) (2023-04-09T20:23:26Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Encoding spatiotemporal priors with VAEs for small-area estimation [2.4783465852664324]
本稿では,新しい時間的設定に対処する深層生成モデリング手法を提案する。
可変オートエンコーダ(VAE)の事前装着による事前サンプリングのクラスを近似する。
VAEは独立に分散された潜在ガウス空間表現のため、推論を驚くほど効率的にすることができる。
ベイズ型小面積推定タスクにおけるVAE2段階アプローチの有用性を実証する。
論文 参考訳(メタデータ) (2021-10-20T08:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。