論文の概要: Evaluating book summaries from internal knowledge in Large Language Models: a cross-model and semantic consistency approach
- arxiv url: http://arxiv.org/abs/2503.21613v1
- Date: Thu, 27 Mar 2025 15:36:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:53:16.263399
- Title: Evaluating book summaries from internal knowledge in Large Language Models: a cross-model and semantic consistency approach
- Title(参考訳): 大規模言語モデルにおける内部知識から本要約を評価する:クロスモデルとセマンティック一貫性のアプローチ
- Authors: Javier Coronado-Blázquez,
- Abstract要約: 本研究では,大規模言語モデル(LLM)を用いて,包括的かつ正確な書籍要約を生成する能力について検討する。
これらのモデルが、確立された人間の解釈と一致した有意義な物語を合成できるかどうかを検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We study the ability of large language models (LLMs) to generate comprehensive and accurate book summaries solely from their internal knowledge, without recourse to the original text. Employing a diverse set of books and multiple LLM architectures, we examine whether these models can synthesize meaningful narratives that align with established human interpretations. Evaluation is performed with a LLM-as-a-judge paradigm: each AI-generated summary is compared against a high-quality, human-written summary via a cross-model assessment, where all participating LLMs evaluate not only their own outputs but also those produced by others. This methodology enables the identification of potential biases, such as the proclivity for models to favor their own summarization style over others. In addition, alignment between the human-crafted and LLM-generated summaries is quantified using ROUGE and BERTScore metrics, assessing the depth of grammatical and semantic correspondence. The results reveal nuanced variations in content representation and stylistic preferences among the models, highlighting both strengths and limitations inherent in relying on internal knowledge for summarization tasks. These findings contribute to a deeper understanding of LLM internal encodings of factual information and the dynamics of cross-model evaluation, with implications for the development of more robust natural language generative systems.
- Abstract(参考訳): 本研究は,大規模言語モデル(LLM)が内部知識のみから包括的かつ正確な書籍要約を生成する能力について,原文に言及することなく検討する。
多様な書籍の集合と複数のLLMアーキテクチャを用いて,これらのモデルが確立した人間の解釈に合致する有意義な物語を合成できるかどうかを検討する。
評価は、LLM-as-a-judgeパラダイムを用いて行われ、各AI生成サマリは、クロスモデルアセスメントを通じて、高品質で人書きの要約と比較される。
この手法は、モデルが他のモデルよりも独自の要約スタイルを好む確率のような潜在的なバイアスの特定を可能にする。
さらに, ROUGE と BERTScore を用いて, 人造要約と LLM 生成要約のアライメントを定量化し, 文法的および意味的対応の深さを評価する。
その結果,要約作業における内的知識に依存した長所と短所の両方が強調され,内容表現やスタイル的嗜好の微妙な変化が明らかとなった。
これらの知見は, LLM内部の事実情報のエンコーディングや, モデル間評価のダイナミクスの理解に寄与し, より堅牢な自然言語生成システムの開発に寄与する。
関連論文リスト
- Potential and Perils of Large Language Models as Judges of Unstructured Textual Data [0.631976908971572]
本研究では,LLM-as-judgeモデルの有効性を検討した。
LLM-as-judgeは、人間に匹敵するスケーラブルなソリューションを提供するが、人間は微妙で文脈固有のニュアンスを検出するのに優れている。
論文 参考訳(メタデータ) (2025-01-14T14:49:14Z) - Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - An LLM Feature-based Framework for Dialogue Constructiveness Assessment [8.87747076871578]
対話構築性評価に関する研究は、(i)個人が特定の行動をとること、議論に勝つこと、視点を変えること、またはオープンマインドネスを広げること、および(ii)そのような事例に対する対話に続く構成性の結果を予測することに焦点を当てている。
これらの目的は、解釈可能な特徴ベースモデルか、事前訓練された言語モデルのようなニューラルモデルのいずれかをトレーニングすることで達成できる。
特徴ベースとニューラルアプローチの強みを組み合わせた対話構築性評価のためのLLM特徴ベースフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-20T22:10:52Z) - Explaining Multi-modal Large Language Models by Analyzing their Vision Perception [4.597864989500202]
本研究では,画像埋め込み成分に着目し,MLLMの解釈可能性を高める新しい手法を提案する。
オープンワールドのローカライゼーションモデルとMLLMを組み合わせることで、同じビジョンの埋め込みからテキストとオブジェクトのローカライゼーション出力を同時に生成できる新しいアーキテクチャを構築する。
論文 参考訳(メタデータ) (2024-05-23T14:24:23Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
本研究では,大言語モデルの固有値システムをスクラッチから再構築する新しいフレームワークであるValueLexを提案する。
語彙仮説に基づいて、ValueLexは30以上のLLMから様々な値を引き出すための生成的アプローチを導入している。
我々は,3つのコア値次元,能力,キャラクタ,積分をそれぞれ特定の部分次元で同定し,LLMが非人間的だが構造化された価値体系を持っていることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T09:44:51Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - Can Large Language Models Understand Context? [17.196362853457412]
本稿では,生成モデルの評価に適合する既存のデータセットを適応させることにより,文脈理解ベンチマークを提案する。
実験結果から, 事前学習された高密度モデルでは, 最先端の微調整モデルと比較して, よりニュアンスな文脈特徴の理解に苦慮していることが明らかとなった。
LLM圧縮は研究と実世界のアプリケーションの両方において重要度が高くなっているため、文脈学習環境下での量子化モデルの文脈理解を評価する。
論文 参考訳(メタデータ) (2024-02-01T18:55:29Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
大規模言語モデル(LLM)は、様々な自然言語処理領域において前例のないブレークスルーを達成した。
LLMの謎的なブラックボックスの性質は、透過的で説明可能なアプリケーションを妨げる、解釈可能性にとって重要な課題である。
本稿では,LLMの全体的解釈を提供することを目的として,スポーシティ誘導技術に係わる新しい方法論を提案する。
論文 参考訳(メタデータ) (2023-12-22T19:55:58Z) - Summarization is (Almost) Dead [49.360752383801305]
我々は,大規模言語モデル(LLM)のゼロショット生成能力を評価するため,新しいデータセットを開発し,人間による評価実験を行う。
本研究は, 微調整モデルにより生成した要約や要約よりも, LLM生成要約に対する人間の評価において, 明らかな優位性を示した。
論文 参考訳(メタデータ) (2023-09-18T08:13:01Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Neural Authorship Attribution: Stylometric Analysis on Large Language
Models [16.63955074133222]
GPT-4、PaLM、Llamaのような大規模言語モデル(LLM)は、AIによるテキスト生成を著しく推進している。
誤用の可能性に対する懸念が高まっているため、AI生成テキストの鑑識の必要性が高まっている。
論文 参考訳(メタデータ) (2023-08-14T17:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。