論文の概要: e-person Architecture and Framework for Human-AI Co-adventure Relationship
- arxiv url: http://arxiv.org/abs/2503.22181v1
- Date: Fri, 28 Mar 2025 06:54:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 19:09:59.591854
- Title: e-person Architecture and Framework for Human-AI Co-adventure Relationship
- Title(参考訳): E-person Architecture and Framework for Human-AI Co-adventure Relation
- Authors: Kanako Esaki, Tadayuki Matsumura, Yang Shao, Hiroyuki Mizuno,
- Abstract要約: e-person アーキテクチャは、倫理の統一基盤として、協調的な認知と行動を通じて不確実性を減少させる。
本稿では,不確実性の低減を脳機能の統一原理とする自由エネルギー原理に基づくe-personフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.0937094979510213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes the e-person architecture for constructing a unified and incremental development of AI ethics. The e-person architecture takes the reduction of uncertainty through collaborative cognition and action with others as a unified basis for ethics. By classifying and defining uncertainty along two axes - (1) first, second, and third person perspectives, and (2) the difficulty of inference based on the depth of information - we support the development of unified and incremental development of AI ethics. In addition, we propose the e-person framework based on the free energy principle, which considers the reduction of uncertainty as a unifying principle of brain function, with the aim of implementing the e-person architecture, and we show our previous works and future challenges based on the proposed framework.
- Abstract(参考訳): 本稿では,AI倫理の統一的・漸進的発展を構築するためのe-personアーキテクチャを提案する。
e-person アーキテクチャは、倫理の統一基盤として、協調的な認知と行動を通じて不確実性を減少させる。
1)第1,第2,第3の視点,(2)情報深度に基づく推論の難しさという2つの軸に沿った不確実性を分類し,定義することにより,AI倫理の統一的・漸進的な発展を支援する。
また,脳機能の統一原理として不確実性の低減を考慮に入れた自由エネルギー原理に基づくe-personフレームワークを提案する。
関連論文リスト
- A Multi-Layered Research Framework for Human-Centered AI: Defining the Path to Explainability and Trust [2.4578723416255754]
人間中心型AI(HCAI)は人間の価値観との整合性を強調し、説明可能なAI(XAI)はAI決定をより理解しやすくすることで透明性を高める。
本稿では,HCAI と XAI を橋渡し,構造的説明可能性パラダイムを確立する新しい3層フレームワークを提案する。
我々の発見は、透明性、適応性、倫理的に整合したAIシステムを育成するHCXAI(Human-Centered Explainable AI)を前進させた。
論文 参考訳(メタデータ) (2025-04-14T01:29:30Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
人々の行動、仕事、能力、類似性、または人間性を模倣するように設計されたAIシステムが増加している。
このようなAIシステムの研究、設計、展開、可用性は、幅広い法的、倫理的、その他の社会的影響に対する懸念を喚起している。
論文 参考訳(メタデータ) (2025-03-04T03:55:38Z) - Towards Developing Ethical Reasoners: Integrating Probabilistic Reasoning and Decision-Making for Complex AI Systems [4.854297874710511]
計算倫理フレームワークは、複雑な実環境で動作するAIと自律システムにとって不可欠である。
既存のアプローチは、倫理原則を動的で曖昧な文脈に組み込むために必要な適応性に欠けることが多い。
本稿では,中間表現,確率論的推論,知識表現を組み合わせた総合的メタレベルフレームワークの構築に必要な要素について概説する。
論文 参考訳(メタデータ) (2025-02-28T17:25:11Z) - What is Ethical: AIHED Driving Humans or Human-Driven AIHED? A Conceptual Framework enabling the Ethos of AI-driven Higher education [0.6216023343793144]
本研究は,ユネスコとOECDの倫理基準の遵守を保証するために,高次教育における人間駆動型AI(HD-AIHED)フレームワークを紹介する。
この研究は、参加型コシステム、フェーズドヒューマンインテリジェンス、SWOC分析、AI倫理レビューボードを適用して、大学やHE機関のAI準備とガバナンス戦略を評価する。
論文 参考訳(メタデータ) (2025-02-07T11:13:31Z) - Problem Solving Through Human-AI Preference-Based Cooperation [74.39233146428492]
我々は,人間-AI共同構築フレームワークであるHAICo2を提案する。
我々は、HAICo2の形式化に向けて第一歩を踏み出し、それが直面する困難なオープンリサーチ問題について議論する。
論文 参考訳(メタデータ) (2024-08-14T11:06:57Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
AIによる意思決定において、人間はしばしばAIの提案を受動的にレビューし、それを受け入れるか拒否するかを決定する。
意思決定における人間-AIの意見の対立に関する議論と人間のリフレクションを促進する新しい枠組みであるHuman-AI Deliberationを提案する。
人間の熟考の理論に基づいて、この枠組みは人間とAIを次元レベルの意見の引用、熟考的議論、意思決定の更新に携わる。
論文 参考訳(メタデータ) (2024-03-25T14:34:06Z) - A multidomain relational framework to guide institutional AI research
and adoption [0.0]
我々は、AIを採用することの意味を理解することを目的とした研究努力が、ほんの一握りのアイデアだけを優先する傾向があると論じている。
本稿では,フィールド間の用語を整理する概念的枠組みとして,シンプルなポリシーと研究設計ツールを提案する。
論文 参考訳(メタデータ) (2023-03-17T16:33:01Z) - Responsible AI Implementation: A Human-centered Framework for
Accelerating the Innovation Process [0.8481798330936974]
本稿では,人工知能(AI)の実装に関する理論的枠組みを提案する。
提案されたフレームワークは、アジャイル共同創造プロセスのための相乗的ビジネス技術アプローチを強調している。
このフレームワークは,AIの人間中心の設計とアジャイル開発を通じて,信頼の確立と維持を重視している。
論文 参考訳(メタデータ) (2022-09-15T06:24:01Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。