論文の概要: AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
- arxiv url: http://arxiv.org/abs/2503.22324v1
- Date: Fri, 28 Mar 2025 10:57:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:32:24.229336
- Title: AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
- Title(参考訳): AH-GS:高周波詳細表現のための3次元ガウス分割法
- Authors: Chenyang Xu, XingGuo Deng, Rui Zhong,
- Abstract要約: AH-GSは、構造的に複雑な領域の3次元ガウスアンが高周波符号化を得ることを可能にする。
本手法は,Scaffold-GSのレンダリング品質をわずか15Kイテレーションで上回る。
- 参考スコア(独自算出の注目度): 5.793751303065176
- License:
- Abstract: The 3D Gaussian Splatting (3D-GS) is a novel method for scene representation and view synthesis. Although Scaffold-GS achieves higher quality real-time rendering compared to the original 3D-GS, its fine-grained rendering of the scene is extremely dependent on adequate viewing angles. The spectral bias of neural network learning results in Scaffold-GS's poor ability to perceive and learn high-frequency information in the scene. In this work, we propose enhancing the manifold complexity of input features and using network-based feature map loss to improve the image reconstruction quality of 3D-GS models. We introduce AH-GS, which enables 3D Gaussians in structurally complex regions to obtain higher-frequency encodings, allowing the model to more effectively learn the high-frequency information of the scene. Additionally, we incorporate high-frequency reinforce loss to further enhance the model's ability to capture detailed frequency information. Our result demonstrates that our model significantly improves rendering fidelity, and in specific scenarios (e.g., MipNeRf360-garden), our method exceeds the rendering quality of Scaffold-GS in just 15K iterations.
- Abstract(参考訳): 3次元ガウススティング(3D-GS)はシーン表現とビュー合成の新しい手法である。
Scaffold-GSは、オリジナルの3D-GSに比べて高品質なリアルタイムレンダリングを実現するが、そのきめ細かいレンダリングは、適切な視角に依存している。
ニューラルネットワーク学習のスペクトルバイアスは、シーン内の高周波情報を知覚し学習するScaffold-GSの能力の低下をもたらす。
本研究では,3D-GSモデルの画像再構成品質を向上させるため,入力特徴量の多様体的複雑性の向上とネットワークベースの特徴マップ損失の利用を提案する。
AH-GSを導入し、構造的に複雑な領域の3次元ガウスアンが高周波数符号化が得られるようにし、シーンの高周波数情報をより効果的に学習できるようにする。
さらに、高頻度の補強損失を組み込んで、詳細な周波数情報を捕捉するモデルの能力をさらに強化する。
その結果,本モデルではレンダリング精度が大幅に向上し,特定のシナリオ(例: MipNeRf360-garden)では,Scuffold-GSのレンダリング品質をわずか15Kイテレーションで上回っていることがわかった。
関連論文リスト
- Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
軽量なXFeat特徴抽出器から高密度かつ堅牢なキーポイント記述器を3DGSに統合する2段階の手順を提案する。
第2段階では、レンダリングベースの光度ワープ損失を最小限に抑え、初期ポーズ推定を洗練させる。
広く使われている屋内および屋外データセットのベンチマークは、最近のニューラルレンダリングベースのローカライゼーション手法よりも改善されていることを示している。
論文 参考訳(メタデータ) (2024-09-24T23:18:32Z) - WildGaussians: 3D Gaussian Splatting in the Wild [80.5209105383932]
3DGSによる閉塞や外見の変化に対処する新しいアプローチであるWildGaussiansを紹介した。
我々はWildGaussianが3DGSとNeRFのベースラインを越えながら3DGSのリアルタイムレンダリング速度と一致していることを示す。
論文 参考訳(メタデータ) (2024-07-11T12:41:32Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本研究では,視覚的忠実度と前景の細部を高い圧縮比で保持する原理的感度プルーニングスコアを提案する。
また,トレーニングパイプラインを変更することなく,事前訓練した任意の3D-GSモデルに適用可能な複数ラウンドプルーファインパイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians [18.774112672831155]
3D-GSは、NeRFベースのニューラルシーン表現と比較して、顕著なレンダリングの忠実さと効率を示した。
シーン表現のためのレベル・オブ・ディーテール分解をサポートするLOD構造型3次元ガウスアプローチを特徴とするOctree-GSを提案する。
論文 参考訳(メタデータ) (2024-03-26T17:39:36Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian は球面調和の代わりに異方性球面ガウス場を利用するアプローチである。
実験結果から,本手法はレンダリング品質の面で既存の手法を超越していることが示された。
この改良は、3D GSの適用性を高めて、特異面と異方面の複雑なシナリオを扱う。
論文 参考訳(メタデータ) (2024-02-24T17:22:15Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。