A Survey of Reinforcement Learning-Based Motion Planning for Autonomous Driving: Lessons Learned from a Driving Task Perspective
- URL: http://arxiv.org/abs/2503.23650v1
- Date: Mon, 31 Mar 2025 01:31:14 GMT
- Title: A Survey of Reinforcement Learning-Based Motion Planning for Autonomous Driving: Lessons Learned from a Driving Task Perspective
- Authors: Zhuoren Li, Guizhe Jin, Ran Yu, Zhiwen Chen, Nan Li, Wei Han, Lu Xiong, Bo Leng, Jia Hu, Ilya Kolmanovsky, Dimitar Filev,
- Abstract summary: Reinforcement learning (RL) has emerged as a promising approach to addressing motion planning (MoP) challenges in autonomous driving (AD)<n>Despite rapid advancements in RL and AD, a systematic description and interpretation of the RL design process remains underdeveloped.<n>This survey provides a comprehensive review of RL-based MoP for AD, focusing on lessons from task-specific perspectives.
- Score: 12.239468388345747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL), with its ability to explore and optimize policies in complex, dynamic decision-making tasks, has emerged as a promising approach to addressing motion planning (MoP) challenges in autonomous driving (AD). Despite rapid advancements in RL and AD, a systematic description and interpretation of the RL design process tailored to diverse driving tasks remains underdeveloped. This survey provides a comprehensive review of RL-based MoP for AD, focusing on lessons from task-specific perspectives. We first outline the fundamentals of RL methodologies, and then survey their applications in MoP, analyzing scenario-specific features and task requirements to shed light on their influence on RL design choices. Building on this analysis, we summarize key design experiences, extract insights from various driving task applications, and provide guidance for future implementations. Additionally, we examine the frontier challenges in RL-based MoP, review recent efforts to addresse these challenges, and propose strategies for overcoming unresolved issues.
Related papers
- Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
We explore the potential of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) frameworks to optimize computational offloading through adaptive, real-time decision-making.
The paper focuses on key aspects such as standardized learning models, optimized reward structures, and collaborative multi-agent systems, aiming to advance the understanding and application of DRL in vehicular networks.
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - Sample-Efficient Reinforcement Learning with Temporal Logic Objectives: Leveraging the Task Specification to Guide Exploration [13.053013407015628]
This paper addresses the problem of learning optimal control policies for systems with uncertain dynamics.
We propose an accelerated RL algorithm that can learn control policies significantly faster than competitive approaches.
arXiv Detail & Related papers (2024-10-16T00:53:41Z) - Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
Large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects such as multi-task learning, sample efficiency, and high-level task planning.
We propose a structured taxonomy to systematically categorize LLMs' functionalities in RL, including four roles: information processor, reward designer, decision-maker, and generator.
arXiv Detail & Related papers (2024-03-30T08:28:08Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - Ensemble Reinforcement Learning: A Survey [43.17635633600716]
Reinforcement Learning (RL) has emerged as a highly effective technique for addressing various scientific and applied problems.
In response, ensemble reinforcement learning (ERL), a promising approach that combines the benefits of both RL and ensemble learning (EL), has gained widespread popularity.
ERL leverages multiple models or training algorithms to comprehensively explore the problem space and possesses strong generalization capabilities.
arXiv Detail & Related papers (2023-03-05T09:26:44Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - A Survey of Deep Reinforcement Learning Algorithms for Motion Planning
and Control of Autonomous Vehicles [2.7398985365813013]
We systematically summarize the current literature on studies that apply reinforcement learning (RL) to the motion planning and control of autonomous vehicles.
Many existing contributions can be attributed to the pipeline approach, which consists of many hand-crafted modules, each with a functionality selected for the ease of human interpretation.
This paper also presents a growing trend of work that falls into the end-to-end approach, which typically offers better performance and smaller system scales.
arXiv Detail & Related papers (2021-05-29T05:27:07Z) - A Comparative Analysis of Deep Reinforcement Learning-enabled Freeway
Decision-making for Automated Vehicles [2.394554182452767]
Deep reinforcement learning (DRL) has emerged as a potent methodology for addressing artificial intelligence challenges.
This article compares several DRL approaches for decision-making challenges encountered by autono-mous vehicles on freeways.
A series of simulation experiments are conducted to assess the control performance of these DRL-enabled decision-making strategies.
arXiv Detail & Related papers (2020-08-04T03:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.