論文の概要: Efficient n-body simulations using physics informed graph neural networks
- arxiv url: http://arxiv.org/abs/2504.01169v1
- Date: Tue, 01 Apr 2025 20:23:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:20:13.490959
- Title: Efficient n-body simulations using physics informed graph neural networks
- Title(参考訳): 物理情報グラフニューラルネットワークを用いた効率的なn体シミュレーション
- Authors: Víctor Ramos-Osuna, Alberto Díaz-Álvarez, Raúl Lara-Cabrera,
- Abstract要約: 本稿では,様々な天体物理シナリオからデータセットを生成するために,跳躍型シミュレーションエンジンを実装した。
カスタム設計のGNNは、高精度で粒子加速を予測するために訓練されている。
提案手法は,従来のシミュレーション手法に比べて約17%の速度向上を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a novel approach for accelerating n-body simulations by integrating a physics-informed graph neural networks (GNN) with traditional numerical methods. Our method implements a leapfrog-based simulation engine to generate datasets from diverse astrophysical scenarios which are then transformed into graph representations. A custom-designed GNN is trained to predict particle accelerations with high precision. Experiments, conducted on 60 training and 6 testing simulations spanning from 3 to 500 bodies over 1000 time steps, demonstrate that the proposed model achieves extremely low prediction errors-loss values while maintaining robust long-term stability, with accumulated errors in position, velocity, and acceleration remaining insignificant. Furthermore, our method yields a modest speedup of approximately 17% over conventional simulation techniques. These results indicate that the integration of deep learning with traditional physical simulation methods offers a promising pathway to significantly enhance computational efficiency without compromising accuracy.
- Abstract(参考訳): 本稿では,物理インフォームドグラフニューラルネットワーク(GNN)を従来の数値手法と組み合わせることで,n体シミュレーションを高速化する新しい手法を提案する。
提案手法では,様々な天体物理シナリオからデータセットを生成し,それをグラフ表現に変換する。
カスタム設計のGNNは、高精度で粒子加速を予測するために訓練されている。
実験では,1000段以上の3~500体にまたがる60のトレーニングと6回のシミュレーションを行い,安定な長期安定性を維持しながら予測誤差を極端に低い値に抑えながら,位置,速度,加速度の蓄積が重要でないことを実証した。
さらに,本手法は従来のシミュレーション手法よりも約17%の速度向上を実現している。
これらの結果から,従来の物理シミュレーション手法と深層学習の統合は,精度を損なうことなく計算効率を大幅に向上させる,有望な経路であることが示唆された。
関連論文リスト
- Thermodynamics-informed graph neural networks for real-time simulation of digital human twins [2.6811507121199325]
本稿では,軟組織シミュレーション研究の進展をめざした新しい手法を提案する。
提案手法は, グラフニューラルネットワークの幾何学的バイアスと, 垂直構造の配置から導かれる物理的バイアスを統合する。
そこで本研究では,ヒト肝臓のトラクションおよび圧縮負荷に対する応答を7.3ミリ秒以内で予測するモデルを提案する。
論文 参考訳(メタデータ) (2024-12-16T18:01:40Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
そこで本研究では,数値解法とニューラル演算子をブレンドしてシミュレーションを高速化する手法を開発した。
物理蒸着中の微細構造変化シミュレーションにおけるこの枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-12-08T23:44:54Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
ニューラルネットワークによるエネルギー最小化のためのGradual Optimization Learning Framework(GOLF)は、必要な追加データを大幅に削減する。
GOLFでトレーニングしたニューラルネットワークは,種々の薬物様分子のベンチマークにおいて,オラクルと同等に動作することを示す。
論文 参考訳(メタデータ) (2023-11-05T11:48:08Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - How to Learn and Generalize From Three Minutes of Data:
Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential
Equations [24.278738290287293]
ニューラル微分方程式(SDE)を用いた制御力学モデル学習のためのフレームワークとアルゴリズムを提案する。
本研究では,従来の物理知識を帰納バイアスとして活用するためのドリフト項を構築し,学習モデルの予測の不確かさを距離認識した推定値を表す拡散項を設計する。
我々は、シミュレーションロボットシステムの実験を通じてこれらの能力を実証し、ヘキサコプターの飛行力学をモデル化し制御する。
論文 参考訳(メタデータ) (2023-06-10T02:33:34Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
物理制約付き深層学習モデルを構築し, 多相多孔質体における多相流の解法について検討した。
モデルは物理に基づくシミュレーションデータから訓練され、物理過程をエミュレートする。
このモデルは物理シミュレーションと比較して1400倍のスピードアップで予測を行う。
論文 参考訳(メタデータ) (2021-04-30T02:15:01Z) - Building high accuracy emulators for scientific simulations with deep
neural architecture search [0.0]
機械学習で高速エミュレータを構築することでシミュレーションを加速するための有望なルートは、大規模なトレーニングデータセットを必要とする。
ここでは,学習データに制限がある場合でも,正確なエミュレータを構築するためのニューラルネットワーク探索に基づく手法を提案する。
この手法は、天体物理学、気候科学、生物地球化学、高エネルギー密度物理学、核融合エネルギー、地震学を含む10の科学ケースにおいて、シミュレーションを最大20億回加速させることに成功した。
論文 参考訳(メタデータ) (2020-01-17T22:14:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。