論文の概要: Analysis of Robustness of a Large Game Corpus
- arxiv url: http://arxiv.org/abs/2504.03940v1
- Date: Fri, 04 Apr 2025 21:15:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:14:11.410460
- Title: Analysis of Robustness of a Large Game Corpus
- Title(参考訳): 大型ゲームコーパスのロバスト性解析
- Authors: Mahsa Bazzaz, Seth Cooper,
- Abstract要約: 2Dタイルベースのゲームレベルは、一貫してPCGMLの標準データセットとして機能している。
ゲームレベルの特異な特徴として、構造化された離散データの性質、ゲーム固有の局所的およびグローバル的制約、入力の小さな変化に対するゲームレベルの敏感さを挙げる。
- 参考スコア(独自算出の注目度): 3.2228025627337864
- License:
- Abstract: Procedural content generation via machine learning (PCGML) in games involves using machine learning techniques to create game content such as maps and levels. 2D tile-based game levels have consistently served as a standard dataset for PCGML because they are a simplified version of game levels while maintaining the specific constraints typical of games, such as being solvable. In this work, we highlight the unique characteristics of game levels, including their structured discrete data nature, the local and global constraints inherent in the games, and the sensitivity of the game levels to small changes in input. We define the robustness of data as a measure of sensitivity to small changes in input that cause a change in output, and we use this measure to analyze and compare these levels to state-of-the-art machine learning datasets, showcasing the subtle differences in their nature. We also constructed a large dataset from four games inspired by popular classic tile-based games that showcase these characteristics and address the challenge of sparse data in PCGML by providing a significantly larger dataset than those currently available.
- Abstract(参考訳): ゲームにおける機械学習(PCGML)による手続き的コンテンツ生成は、地図やレベルなどのゲームコンテンツを作成するために機械学習技術を使用する。
2Dタイルベースのゲームレベルは、PCGMLの標準データセットとして一貫して機能している。
本研究では,その構成された離散データの性質,ゲーム固有の局所的・大域的制約,入力の小さな変化に対するゲームレベルの感度など,ゲームレベルのユニークな特徴を強調した。
我々は、データのロバスト性を、出力の変化を引き起こす入力の小さな変化に対する感度の尺度として定義し、この尺度を用いて、これらのレベルを最先端の機械学習データセットに分析・比較し、その性質の微妙な違いを示す。
また,従来のタイル型ゲームにインスパイアされた4つのゲームから得られた大規模なデータセットを構築し,PCGMLにおけるスパースデータの課題に対処した。
関連論文リスト
- Multi-Environment Pretraining Enables Transfer to Action Limited
Datasets [129.24823721649028]
強化学習では、意思決定の利用可能なデータは、アクションに注釈を付けないことが多い。
そこで本研究では,Emphtarget環境と他のさまざまなEmphsource環境の完全注釈付きデータセットを組み合わせることを提案する。
IDMプレトレーニング中に、さらに1つの連続ラベル付きデータの環境データセットを利用することで、アノテーションのないシーケンスに対するアクションラベルの生成が大幅に改善されることが示される。
論文 参考訳(メタデータ) (2022-11-23T22:48:22Z) - Personalized Game Difficulty Prediction Using Factorization Machines [0.9558392439655011]
コンテンツレコメンデーションからの手法を借りて,ゲームレベルのパーソナライズした難易度推定に寄与する。
我々は、プレイヤーが将来のゲームレベルを通過させるのに必要な試行回数と、他のプレイヤーがプレイする以前のレベルの試行回数に基づいて、難易度を予測することができる。
この結果から,FMはゲームデザイナーがプレイヤー体験を最適化し,プレイヤーとゲームについてより深く学ぶことができる,有望なツールであることが示唆された。
論文 参考訳(メタデータ) (2022-09-06T08:03:46Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Data Scaling Laws in NMT: The Effect of Noise and Architecture [59.767899982937756]
ニューラルネットワーク翻訳(NMT)のデータスケーリング特性に及ぼすアーキテクチャとトレーニングデータ品質の影響について検討する。
データスケーリング指数は最小限の影響を受けており、より多くのデータを追加することで、極端に悪いアーキテクチャやトレーニングデータの補償が可能になることを示唆しています。
論文 参考訳(メタデータ) (2022-02-04T06:53:49Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
リモートセンシングデータのためのラベルの自動生成のためのビッグデータ処理パイプラインを評価する。
我々は,大規模データプラットフォームであるIBM PAIRSを用いて,密集都市部でそのようなラベルを動的に生成する。
論文 参考訳(メタデータ) (2022-01-31T20:02:22Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
我々は、このようなデータセットを変更検出の文脈で活用するのに役立つ独自のアイデアを提案する。
まず,意味的セグメンテーション結果を改善する誘導異方性拡散(GAD)アルゴリズムを提案する。
次に、変化検出に適した2つの弱い教師付き学習戦略の可能性を示す。
論文 参考訳(メタデータ) (2021-12-31T10:03:47Z) - Tile Embedding: A General Representation for Procedural Level Generation
via Machine Learning [1.590611306750623]
タイルをベースとした2Dゲームのための,統一的で手頃な表現であるタイル埋め込みを提案する。
我々は、既存の人間の注釈付きゲームからタイルの視覚的および意味的な情報に基づいて訓練されたオートエンコーダを採用する。
我々は、この表現を、目に見えないタイルの余裕を予測し、注釈付きゲームや注釈なしゲームのためのPLGML表現として機能する能力に基づいて評価する。
論文 参考訳(メタデータ) (2021-10-07T04:48:48Z) - Level Generation for Angry Birds with Sequential VAE and Latent Variable
Evolution [25.262831218008202]
我々は,Angry Birdsのゲームドメインに対して,深部生成モデルに基づくレベル生成を開発する。
実験により,提案したレベルジェネレータは生成レベルの安定性と多様性を大幅に改善することが示された。
論文 参考訳(メタデータ) (2021-04-13T11:23:39Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
例えばRoguelikesのようなターンベースの戦略ゲームは、Deep Reinforcement Learning(DRL)にユニークな課題を提示する。
複雑なカテゴリ状態空間をより適切に処理し、設計決定によって強制的に再訓練する必要性を緩和する2つのネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-07T08:47:25Z) - Controllable Level Blending between Games using Variational Autoencoders [6.217860411034386]
スーパーマリオブラザーズとキッド・イカラスのレベルデータに基づいてVAEをトレーニングし、両方のゲームにまたがる潜伏空間を捕捉できるようにします。
次に、この空間を用いて、両方のゲームからレベルの特性を組み合わせたレベルセグメントを生成する。
これらの余裕は、特に共同創造的レベルの設計にVAEベースのアプローチを適していると我々は主張する。
論文 参考訳(メタデータ) (2020-02-27T01:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。