論文の概要: Resurrecting Socrates in the Age of AI: A Study Protocol for Evaluating a Socratic Tutor to Support Research Question Development in Higher Education
- arxiv url: http://arxiv.org/abs/2504.06294v1
- Date: Sat, 05 Apr 2025 00:49:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 01:06:34.416394
- Title: Resurrecting Socrates in the Age of AI: A Study Protocol for Evaluating a Socratic Tutor to Support Research Question Development in Higher Education
- Title(参考訳): AI時代のソクラテスの復活 : 高等教育における研究課題開発を支援するソクラテスチューターの評価のための研究議定書
- Authors: Ben Degen,
- Abstract要約: このプロトコルは、新しいAIベースのソクラティックチューターを評価するための構成主義的学習理論に基づく研究を定めている。
教師は、システム2の思考を促進するために、反復的で反射的な質問を通じて学生を巻き込みます。
この研究は、人間の認知を置き換えるのではなく、人工的なAIをどのように支援に適応させるかを理解することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Formulating research questions is a foundational yet challenging academic skill, one that generative AI systems often oversimplify by offering instant answers at the expense of student reflection. This protocol lays out a study grounded in constructivist learning theory to evaluate a novel AI-based Socratic Tutor, designed to foster cognitive engagement and scaffold research question development in higher education. Anchored in dialogic pedagogy, the tutor engages students through iterative, reflective questioning, aiming to promote System 2 thinking and counteract overreliance on AI-generated outputs. In a quasi-experimental design, approximately 80 German pre-service biology teacher students will be randomly assigned to one of two groups: an AI Socratic Tutor condition and an uninstructed chatbot control. Across multiple cycles, students are expected to formulate research questions based on background texts, with quality assessed through double-blind expert review. The study also examines transfer of skills to novel phenomena and captures student perceptions through mixed-methods analysis, including surveys, interviews and reflective journals. This study aims to advance the understanding of how generative AI can be pedagogically aligned to support, not replace, human cognition and offers design principles for human-AI collaboration in education.
- Abstract(参考訳): 研究質問の定式化は基礎的だが難しい学術的スキルであり、生み出すAIシステムは、学生の振り返りを犠牲にして即答を提供することによって、しばしば単純化される。
このプロトコルは、高等教育における認知的エンゲージメントと足場研究の課題開発を促進するために設計された、AIベースの新しいソクラティックチューターを評価するための構成主義的学習理論に基づく研究を定めている。
教師は対話的な教育に精通し、反復的で反射的な質問を通じて学生を巻き込み、システム2の思考を促進し、AI生成出力に対する過度な信頼に対処する。
準実験的な設計では、約80人のドイツの前サービス生物学の教師が、AIソクラティックチューター条件と教師なしのチャットボット制御の2つのグループのうちの1つにランダムに割り当てられる。
複数のサイクルにまたがって、学生は背景テキストに基づいて研究の質問を定式化し、品質はダブルブラインドの専門家レビューによって評価される。
この研究は、新しい現象へのスキルの移転についても検討し、調査、インタビュー、リフレクティブジャーナルを含む混合メソッド分析を通じて学生の知覚を捉えている。
本研究の目的は、人的認知に取って代わらず、教育における人間とAIの協調を支援するために、生成的AIをどのように連携させるかを理解することであり、教育における人間とAIの協調のための設計原則を提供することである。
関連論文リスト
- Form-Substance Discrimination: Concept, Cognition, and Pedagogy [55.2480439325792]
本稿では,高等教育におけるカリキュラム開発に欠かせない学習成果として,フォーム・サブスタンス・差別について検討する。
本稿では,カリキュラム設計,評価実践,明示的な指導を通じて,この能力を育成するための実践的戦略を提案する。
論文 参考訳(メタデータ) (2025-04-01T04:15:56Z) - Sakshm AI: Advancing AI-Assisted Coding Education for Engineering Students in India Through Socratic Tutoring and Comprehensive Feedback [1.9841192743072902]
プログラミング教育のための既存のAIツールは、ソクラティックガイダンスの欠如など、重要な課題に直面している。
本研究では,1170名の登録参加者を対象に,プラットフォームログ,エンゲージメント傾向,問題解決行動を分析し,Sakhm AIの効果を評価する。
論文 参考訳(メタデータ) (2025-03-16T12:13:29Z) - The Imitation Game for Educational AI [23.71250100390303]
本稿では,2相チューリング様試験に基づく新しい評価フレームワークを提案する。
フェーズ1では、学生は質問に対するオープンな回答を提供し、自然な誤解を明らかにします。
フェーズ2では、AIと人間の専門家の両方が、各学生の特定のミスを条件に、新しい関連する質問に気を散らす。
論文 参考訳(メタデータ) (2025-02-21T01:14:55Z) - AI-Enhanced Sensemaking: Exploring the Design of a Generative AI-Based Assistant to Support Genetic Professionals [38.54324092761751]
生成AIは、知識労働を変革する可能性があるが、生成AIの使用と相互作用を知識労働者がどのように想定するかを理解するためには、さらなる研究が必要である。
本研究は、ゲノム全配列(WGS)およびその他の臨床データを分析して稀な疾患診断を行う際に、遺伝専門家を支援するための生成AIアシスタントを設計することに焦点を当てた。
論文 参考訳(メタデータ) (2024-12-19T22:54:49Z) - AI in Education: Rationale, Principles, and Instructional Implications [0.0]
ChatGPTのような生成AIは、人間のようなコンテンツを作り、その教育的役割について疑問を呈する。
この研究は、AIが真の認知的努力を補うのではなく、確実に補完する意図的な戦略を強調している。
論文 参考訳(メタデータ) (2024-12-02T14:08:07Z) - Do great minds think alike? Investigating Human-AI Complementarity in Question Answering with CAIMIRA [43.116608441891096]
人間は知識に基づく帰納的、概念的推論においてAIシステムより優れています。
GPT-4やLLaMAのような最先端のLLMは、ターゲット情報検索において優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-09T03:53:26Z) - Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [176.39275404745098]
我々は,2つのAIアシスタントであるGPT-3.5とGPT-4が適切な回答を得られるかどうかを評価する。
GPT-4は65.8%の質問を正解し、85.1%の質問に対して少なくとも1つの手順で正しい答えを出すことができる。
この結果から,AIの進歩を踏まえて,高等教育におけるプログラムレベルの評価設計の見直しが求められた。
論文 参考訳(メタデータ) (2024-08-07T12:11:49Z) - Charting the Future of AI in Project-Based Learning: A Co-Design
Exploration with Students [35.05435052195561]
学習における人工知能(AI)の利用の増加は、学習成果を評価するための新たな課題を提示している。
本稿では,学生のAI活用データの新たな評価材料としての可能性を検討するための共同設計研究を紹介する。
論文 参考訳(メタデータ) (2024-01-26T14:49:29Z) - Collaborative Learning with Artificial Intelligence Speakers (CLAIS):
Pre-Service Elementary Science Teachers' Responses to the Prototype [0.5113447003407372]
CLAISシステムは、3、4人の人間の学習者がAIスピーカーに参加して小さなグループを形成し、人間とAIはJigsaw学習プロセスに参加する仲間と見なされるように設計されている。
CLAISシステムは15人の小学校教師による理科教育講習会で成功裏に実装された。
論文 参考訳(メタデータ) (2023-12-20T01:19:03Z) - AI Chatbots as Multi-Role Pedagogical Agents: Transforming Engagement in
CS Education [8.898863361318817]
4つの異なるチャットボットを備えた新しい学習環境を開発し,実装し,評価する。
これらの役割は、学習者(能力、自律性、関連性)の3つの本質的な心理的ニーズを満たす。
このシステムは、質問に基づく学習パラダイムを採用し、学生に質問をし、解決策を求め、その好奇心を探求するよう促す。
論文 参考訳(メタデータ) (2023-08-08T02:13:44Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Exploring User Perspectives on ChatGPT: Applications, Perceptions, and
Implications for AI-Integrated Education [40.38809129759498]
ChatGPTは、高等教育、K-12教育、実践的スキルトレーニングの領域でよく使われている。
一方で、学生の自己効力感と学習意欲を増幅できる変革的ツールであると考えるユーザもいる。
一方,利用者の理解度は高い。
論文 参考訳(メタデータ) (2023-05-22T15:13:14Z) - Creation and Evaluation of a Pre-tertiary Artificial Intelligence (AI)
Curriculum [58.86139968005518]
香港大学(CUHK)-Jockey Club AI for the Future Project(AI4Future)は、第3次教育のためのAIカリキュラムを共同開発した。
工学と教育を専門とする14人の教授が、6つの中学校の17の校長と教師と協力してカリキュラムを共同作成した。
共同創造プロセスは、AIにおける教師の知識を高める様々なリソースを生み出し、その課題を教室に持ち込むための教師の自主性を育んだ。
論文 参考訳(メタデータ) (2021-01-19T11:26:19Z) - Thinking Fast and Slow in AI [38.8581204791644]
本稿では,人間の意思決定の認知理論からインスピレーションを得たAI研究の方向性を提案する。
前提は、AIでまだ不足しているいくつかの人間の能力の原因について洞察を得ることができれば、AIシステムで同様の能力を得ることができるということです。
論文 参考訳(メタデータ) (2020-10-12T20:10:05Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。