A Replica for our Democracies? On Using Digital Twins to Enhance Deliberative Democracy
- URL: http://arxiv.org/abs/2504.07138v2
- Date: Tue, 10 Jun 2025 23:11:07 GMT
- Title: A Replica for our Democracies? On Using Digital Twins to Enhance Deliberative Democracy
- Authors: Claudio Novelli, Javier Argota Sánchez-Vaquerizo, Dirk Helbing, Antonino Rotolo, Luciano Floridi,
- Abstract summary: This paper explores Digital Twin (DT) technology as a computational testing ground for deliberative systems.<n>By constructing dynamic models that simulate real-world deliberation, DTs allow researchers and policymakers to rigorously test "what-if" scenarios.
- Score: 0.41942958779358663
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deliberative democracy depends on carefully designed institutional frameworks, such as participant selection, facilitation methods, and decision-making mechanisms, that shape how deliberation performs. However, identifying optimal institutional designs for specific contexts remains challenging when relying solely on real-world observations or laboratory experiments: they can be expensive, ethically and methodologically tricky, or too limited in scale to give us clear answers. Computational experiments offer a complementary approach, enabling researchers to conduct large-scale investigations while systematically analyzing complex dynamics, emergent and unexpected collective behavior, and risks or opportunities associated with novel democratic designs. Therefore, this paper explores Digital Twin (DT) technology as a computational testing ground for deliberative systems (with potential applicability to broader institutional analysis). By constructing dynamic models that simulate real-world deliberation, DTs allow researchers and policymakers to rigorously test "what-if" scenarios across diverse institutional configurations in a controlled virtual environment. This approach facilitates evidence-based assessment of novel designs using synthetically generated data, bypassing the constraints of real-world or lab-based experimentation, and without societal disruption. The paper also discusses the limitations of this new methodological approach and suggests where future research should focus.
Related papers
- Reimagining Urban Science: Scaling Causal Inference with Large Language Models [39.231736674554995]
Urban causal research is essential for understanding the complex, dynamic processes that shape cities.<n>Current practices are often constrained by inefficient and biased hypothesis formulation.<n>We propose UrbanCIA, a conceptual framework composed of four distinct modular agents responsible for hypothesis generation, data engineering, experiment design and execution, and results interpretation with policy insights.
arXiv Detail & Related papers (2025-04-15T16:58:11Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.<n>Models may behave unreliably due to poorly explored failure modes.<n> causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Generate to Discriminate: Expert Routing for Continual Learning [59.71853576559306]
Generate to Discriminate (G2D) is a continual learning method that leverages synthetic data to train a domain-discriminator.<n>We observe that G2D outperforms competitive domain-incremental learning methods on tasks in both vision and language modalities.
arXiv Detail & Related papers (2024-12-22T13:16:28Z) - Learning to Generate Research Idea with Dynamic Control [21.30777644522451]
Large language models (LLMs) have shown promise in generating hypotheses and research ideas.<n>We introduce a novel framework that employs a two-stage approach combiningSupervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL)<n>Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.
arXiv Detail & Related papers (2024-12-19T08:28:18Z) - SoK: Software Compartmentalization [3.058923790501231]
Decomposing large systems into smaller components has long been recognized as an effective means to minimize the impact of exploits.
Despite historical roots, demonstrated benefits, and a plethora of research efforts in academia and industry, the compartmentalization of software is still not a mainstream practice.
We propose a unified model for the systematic analysis, comparison, and directing of compartmentalization approaches.
arXiv Detail & Related papers (2024-10-11T00:38:45Z) - Digital Homunculi: Reimagining Democracy Research with Generative Agents [0.0]
I examine the potential of GenAI-assisted research to mitigate current limitations in democratic experimentation.
I argue that the benefits of synthetic data are likely to outweigh their drawbacks if implemented with proper caution.
The paper concludes with a call for interdisciplinary collaboration in the development and implementation of GenAI-assisted methods in democracy research.
arXiv Detail & Related papers (2024-09-01T19:57:32Z) - Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry [1.1060425537315088]
Digital Twins (DTs) are virtual replicas of physical manufacturing systems that combine sensor data with sophisticated data-based or physics-based models, or a combination thereof, to tackle a variety of industrial-relevant tasks like process monitoring, predictive control or decision support.
The backbone of a DT, i.e. the concrete modelling methodologies and architectural frameworks supporting these models, are complex, diverse and evolve fast, necessitating a thorough understanding of the latest state-of-the-art methods and trends to stay on top of a highly competitive market.
arXiv Detail & Related papers (2024-07-02T14:05:10Z) - Self-Distilled Disentangled Learning for Counterfactual Prediction [49.84163147971955]
We propose the Self-Distilled Disentanglement framework, known as $SD2$.
Grounded in information theory, it ensures theoretically sound independent disentangled representations without intricate mutual information estimator designs.
Our experiments, conducted on both synthetic and real-world datasets, confirm the effectiveness of our approach.
arXiv Detail & Related papers (2024-06-09T16:58:19Z) - CERN for AI: A Theoretical Framework for Autonomous Simulation-Based Artificial Intelligence Testing and Alignment [1.7586848727052424]
This study investigates an innovative simulation-based multi-agent system within a virtual reality framework that replicates the real-world environment.<n>The framework is populated by automated 'digital citizens,' simulating complex social structures and interactions to examine and optimize AI.
arXiv Detail & Related papers (2023-12-14T23:48:51Z) - Endogenous Macrodynamics in Algorithmic Recourse [52.87956177581998]
Existing work on Counterfactual Explanations (CE) and Algorithmic Recourse (AR) has largely focused on single individuals in a static environment.
We show that many of the existing methodologies can be collectively described by a generalized framework.
We then argue that the existing framework does not account for a hidden external cost of recourse, that only reveals itself when studying the endogenous dynamics of recourse at the group level.
arXiv Detail & Related papers (2023-08-16T07:36:58Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - Taxonomy of A Decision Support System for Adaptive Experimental Design
in Field Robotics [19.474298062145003]
We propose a Decision Support System (DSS) to amplify the human's decision-making abilities and enable principled decision-making in field experiments.
We construct and present our taxonomy using examples and trends from DSS literature, including works involving artificial intelligence and Intelligent DSSs.
arXiv Detail & Related papers (2022-10-15T23:28:30Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Digital Twin: From Concept to Practice [1.3633989508250934]
This paper proposes a framework to help practitioners select an appropriate level of sophistication in a Digital Twin.
Three real-life case studies illustrate the application and usefulness of the framework.
arXiv Detail & Related papers (2022-01-14T17:41:26Z) - Scaling up Search Engine Audits: Practical Insights for Algorithm
Auditing [68.8204255655161]
We set up experiments for eight search engines with hundreds of virtual agents placed in different regions.
We demonstrate the successful performance of our research infrastructure across multiple data collections.
We conclude that virtual agents are a promising venue for monitoring the performance of algorithms across long periods of time.
arXiv Detail & Related papers (2021-06-10T15:49:58Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - Learning-Driven Decision Mechanisms in Physical Layer: Facts,
Challenges, and Remedies [23.446736654473753]
This paper introduces the common assumptions in the physical layer to highlight their discrepancies with practical systems.
As a solution, learning algorithms are examined by considering implementation steps and challenges.
arXiv Detail & Related papers (2021-02-14T22:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.