論文の概要: Truncated Matrix Completion - An Empirical Study
- arxiv url: http://arxiv.org/abs/2504.09873v1
- Date: Mon, 14 Apr 2025 04:42:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:55:54.032320
- Title: Truncated Matrix Completion - An Empirical Study
- Title(参考訳): トランケートマトリックスコンプリート : 実証研究
- Authors: Rishhabh Naik, Nisarg Trivedi, Davoud Ataee Tarzanagh, Laura Balzano,
- Abstract要約: 低ランク行列補完は、部分的に観察された低ランク行列の欠落成分を回復したいという問題を記述している。
サンプリングマスクが基礎となるデータ値に依存している様々な設定を考察し,センサ,シーケンシャルな意思決定,レコメンデーションシステムなどの応用に動機付けている。
- 参考スコア(独自算出の注目度): 7.912206996605676
- License:
- Abstract: Low-rank Matrix Completion (LRMC) describes the problem where we wish to recover missing entries of partially observed low-rank matrix. Most existing matrix completion work deals with sampling procedures that are independent of the underlying data values. While this assumption allows the derivation of nice theoretical guarantees, it seldom holds in real-world applications. In this paper, we consider various settings where the sampling mask is dependent on the underlying data values, motivated by applications in sensing, sequential decision-making, and recommender systems. Through a series of experiments, we study and compare the performance of various LRMC algorithms that were originally successful for data-independent sampling patterns.
- Abstract(参考訳): 低ランク行列補完(LRMC)は、部分的に観察された低ランク行列の欠落したエントリを回復したいという問題を記述している。
既存の行列補完作業の多くは、基礎となるデータ値に依存しないサンプリング手順を扱う。
この仮定は優れた理論的な保証の導出を可能にするが、現実の応用ではほとんど成り立たない。
本稿では,サンプリングマスクが基礎となるデータ値に依存し,センサ,シーケンシャルな意思決定,レコメンデーションシステムなどの応用によって動機付けられるさまざまな設定について考察する。
一連の実験を通して,データ非依存サンプリングパターンで成功した様々なLRMCアルゴリズムの性能について検討し,比較を行った。
関連論文リスト
- Optimal Estimation of Shared Singular Subspaces across Multiple Noisy Matrices [3.3373545585860596]
本研究は,低ランク行列デノジングフレームワークにおいて,複数の行列にまたがる共有(左)特異部分空間を推定することに焦点を当てる。
信号行列の真の特異部分空間が同一である場合、Stack-SVDは最小の最大速度最適化を実現する。
部分的共有の様々なケースにおいて、Stack-SVDが有効であり続ける条件を厳格に特徴付け、最小限の最適性を達成したり、一貫した見積もりを達成できなかったりする。
論文 参考訳(メタデータ) (2024-11-26T02:49:30Z) - Multiple Testing of Linear Forms for Noisy Matrix Completion [13.269597888405759]
急激な新しい統計値を持つ個別試験のための新しい統計値を導入することで、難易度を克服する一般的な手法を開発する。
ほぼ最適なサンプルサイズ条件下で、有効FDR制御が保証されたパワーで達成可能であることを示す。
論文 参考訳(メタデータ) (2023-12-01T02:53:20Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
低ランク構造を持つ強化学習(RL)における行列推定問題について検討した。
低ランク帯では、回収される行列は期待される腕の報酬を指定し、低ランクマルコフ決定プロセス(MDP)では、例えばMDPの遷移カーネルを特徴付ける。
簡単なスペクトルベースの行列推定手法は,行列の特異部分空間を効率よく復元し,ほぼ最小の入力誤差を示すことを示す。
論文 参考訳(メタデータ) (2023-10-10T17:06:41Z) - The Ordered Matrix Dirichlet for Modeling Ordinal Dynamics [54.96229007229786]
観測された動作タイプに潜伏状態のマッピングを行うための順序付き行列ディリクレ(OMD)を提案する。
OMD上に構築されたモデルでは、解釈可能な潜在状態を復元し、数ショット設定で優れた予測性能を示す。
論文 参考訳(メタデータ) (2022-12-08T08:04:26Z) - Causal Matrix Completion [15.599296461516984]
マトリックス完備化(Matrix completion)は、ノイズ観測のスパース部分集合から基礎となる行列を復元する研究である。
伝統的に、行列の成分は「ランダムに完全に欠落している」と仮定される。
論文 参考訳(メタデータ) (2021-09-30T14:17:56Z) - BELT: Blockwise Missing Embedding Learning Transfomer [9.341699514447113]
本稿では,行単位/列単位の欠落を扱うために,ブロックワイドなbf埋め込みbf学習bf変換器(BELT)を提案する。
具体的には,複数の音源から各行列が重なり合う場合の行列回復を効率的に行う手法を提案する。
論文 参考訳(メタデータ) (2021-05-21T13:55:30Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
ロバスト低ランク行列補完(RMC)は、コンピュータビジョン、信号処理、機械学習アプリケーションのために広く研究されている。
この問題は、部分的に観察された行列を低ランク行列とスパース行列の重ね合わせに分解することを目的とした。
RMCに取り組むために広く用いられるアプローチは、低ランク行列の核ノルム(低ランク性を促進するために)とスパース行列のl1ノルム(空間性を促進するために)を最小化する凸定式化を考えることである。
本稿では、近年のローワークの動機付けについて述べる。
論文 参考訳(メタデータ) (2020-08-18T04:46:22Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
そこで我々は,適応的かつ音質の高い"核フロベニウスノルム"と呼ばれる新しい非スケーラブルな低ランク正規化器を提案する。
特異値の計算をバイパスし、アルゴリズムによる高速な最適化を可能にする。
既存の行列学習手法では最速でありながら、最先端の回復性能が得られる。
論文 参考訳(メタデータ) (2020-08-14T18:47:58Z) - Robust Matrix Completion with Mixed Data Types [0.0]
我々は,データ型が混在する部分的なエントリを持つ構造的低ランク行列を復元する問題を考察する。
ほとんどのアプローチは、基礎となる分布は1つしかないと仮定し、低階の制約は、行列 Satten Norm によって正則化される。
本稿では, 並列化に適したアルゴリズムフレームワークとともに, 高い回復保証を有する計算可能な統計手法を提案し, 混合データ型に対する部分的に観測されたエントリを持つ低階行列を1ステップで復元する。
論文 参考訳(メタデータ) (2020-05-25T21:35:10Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
近年、低ランクなマルチビューサブスペース学習は、クロスビューの分類において大きな可能性を示している。
既存のLMvSLベースの手法では、ビューの区別と差別を同時に扱うことができない。
本稿では,視差を効果的に除去し,識別性を向上する独自の方法であるStructured Low-rank Matrix Recovery (SLMR)を提案する。
論文 参考訳(メタデータ) (2020-03-22T03:57:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。