Adaptive Non-local Observable on Quantum Neural Networks
- URL: http://arxiv.org/abs/2504.13414v2
- Date: Sat, 26 Apr 2025 20:29:24 GMT
- Title: Adaptive Non-local Observable on Quantum Neural Networks
- Authors: Hsin-Yi Lin, Huan-Hsin Tseng, Samuel Yen-Chi Chen, Shinjae Yoo,
- Abstract summary: We propose an adaptive non-local measurement framework for quantum circuits.<n>Inspired by the Heisenberg picture, we show that optimizing VQC rotations corresponds to tracing a trajectory in the observable space.<n>We show that properly incorporating variational rotations with non-local observables enhances qubit interaction and information mixture.
- Score: 10.617463958884528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional Variational Quantum Circuits (VQCs) for Quantum Machine Learning typically rely on a fixed Hermitian observable, often built from Pauli operators. Inspired by the Heisenberg picture, we propose an adaptive non-local measurement framework that substantially increases the model complexity of the quantum circuits. Our introduction of dynamical Hermitian observables with evolving parameters shows that optimizing VQC rotations corresponds to tracing a trajectory in the observable space. This viewpoint reveals that standard VQCs are merely a special case of the Heisenberg representation. Furthermore, we show that properly incorporating variational rotations with non-local observables enhances qubit interaction and information mixture, admitting flexible circuit designs. Two non-local measurement schemes are introduced, and numerical simulations on classification tasks confirm that our approach outperforms conventional VQCs, yielding a more powerful and resource-efficient approach as a Quantum Neural Network.
Related papers
- Quantum parallel information exchange (QPIE) hybrid network with transfer learning [18.43273756128771]
Quantum machine learning (QML) has emerged as an innovative framework with the potential to uncover complex patterns.<n>We introduce quantum parallel information exchange (QPIE) hybrid network, a new non-sequential hybrid classical quantum model architecture.<n>We develop a dynamic gradient selection method that applies the parameter shift rule on quantum processing units.
arXiv Detail & Related papers (2025-04-05T17:25:26Z) - Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
We propose Quantum Adaptive Self-Attention (QASA), a novel hybrid architecture that enhances classical Transformer models with a quantum attention mechanism.<n>QASA replaces dot-product attention with a parameterized quantum circuit (PQC) that adaptively captures inter-token relationships in the quantum Hilbert space.<n> Experiments on synthetic time-series tasks demonstrate that QASA achieves faster convergence and superior generalization compared to both standard Transformers and reduced classical variants.
arXiv Detail & Related papers (2025-04-05T02:52:37Z) - Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement [0.0]
We propose a novel architecture, which incorporates pointwise convolution within a quantum neural network framework.<n>By using quantum circuits, we map data to a higher-dimensional space, capturing more complex feature relationships.<n>In experiments, we applied the quantum pointwise convolution layer to classification tasks on the FashionMNIST and CIFAR10 datasets.
arXiv Detail & Related papers (2024-12-02T08:03:59Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Exploring quantum localization with machine learning [39.58317527488534]
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization.
Our approach integrates a versatile quantum phase space parametrization leading to a custom 'quantum' NN, with the pattern recognition capabilities of a modified convolutional model.
arXiv Detail & Related papers (2024-06-01T08:50:26Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Group Convolutional Neural Networks Improve Quantum State Accuracy [1.52292571922932]
We show how to create maximally expressive models for quantum states with specific symmetry properties.
We implement group equivariant convolutional networks (G-CNN) citecohen2016group, and demonstrate that performance improvements can be achieved without increasing memory use.
arXiv Detail & Related papers (2021-04-11T19:45:10Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.