論文の概要: Pets: General Pattern Assisted Architecture For Time Series Analysis
- arxiv url: http://arxiv.org/abs/2504.14209v1
- Date: Sat, 19 Apr 2025 07:12:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 04:12:09.561736
- Title: Pets: General Pattern Assisted Architecture For Time Series Analysis
- Title(参考訳): Pets: 時系列分析のための一般的なパターン支援アーキテクチャ
- Authors: Xiangkai Ma, Xiaobin Hong, Wenzhong Li, Sanglu Lu,
- Abstract要約: 時系列分析は、天気予報、異常検出、医療などの分野で広く応用されている。
伝統的な分解技術は、季節成分から複数の変動パターンを効果的に切り離すのに苦労する。
本稿では,時間スペクトル空間内のエネルギー分布に基づく新しい視点を提案する。
- 参考スコア(独自算出の注目度): 13.555837288440946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series analysis has found widespread applications in areas such as weather forecasting, anomaly detection, and healthcare. However, real-world sequential data often exhibit a superimposed state of various fluctuation patterns, including hourly, daily, and monthly frequencies. Traditional decomposition techniques struggle to effectively disentangle these multiple fluctuation patterns from the seasonal components, making time series analysis challenging. Surpassing the existing multi-period decoupling paradigms, this paper introduces a novel perspective based on energy distribution within the temporal-spectrum space. By adaptively quantifying observed sequences into continuous frequency band intervals, the proposed approach reconstructs fluctuation patterns across diverse periods without relying on domain-specific prior knowledge. Building upon this innovative strategy, we propose Pets, an enhanced architecture that is adaptable to arbitrary model structures. Pets integrates a Fluctuation Pattern Assisted (FPA) module and a Context-Guided Mixture of Predictors (MoP). The FPA module facilitates information fusion among diverse fluctuation patterns by capturing their dependencies and progressively modeling these patterns as latent representations at each layer. Meanwhile, the MoP module leverages these compound pattern representations to guide and regulate the reconstruction of distinct fluctuations hierarchically. Pets achieves state-of-the-art performance across various tasks, including forecasting, imputation, anomaly detection, and classification, while demonstrating strong generalization and robustness.
- Abstract(参考訳): 時系列分析は、天気予報、異常検出、医療などの分野で広く応用されている。
しかし、実世界のシーケンシャルデータは、時間帯、日毎、月毎の頻度など、様々な変動パターンの重畳状態を示すことが多い。
伝統的な分解技術は、これらの複数の変動パターンを季節成分から効果的に切り離すのに苦労し、時系列解析を困難にしている。
本稿では,既存の多周期デカップリングパラダイムを超越して,時間スペクトル空間内のエネルギー分布に基づく新しい視点を提案する。
観測されたシーケンスを連続周波数帯域間隔に適応的に定量化することにより、ドメイン固有の事前知識に頼ることなく、様々な期間にわたって変動パターンを再構成する。
この革新的な戦略に基づいて、任意のモデル構造に適応可能な拡張アーキテクチャであるPetsを提案する。
Pets は Fluctuation Pattern Assisted (FPA) モジュールと Context-Guided Mixture of Predictors (MoP) を統合している。
FPAモジュールは、依存関係をキャプチャし、各レイヤにおける遅延表現としてこれらのパターンを段階的にモデル化することで、さまざまな変動パターン間の情報融合を促進する。
一方、MoPモジュールはこれらの複合パターン表現を利用して、異なるゆらぎの再構築を階層的にガイドし、調整する。
ペットは予測、計算、異常検出、分類など様々なタスクで最先端のパフォーマンスを達成し、強力な一般化と堅牢性を示している。
関連論文リスト
- MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T11:40:14Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
周波数領域で異なる時間粒度(または対応する周波数分解能)の時系列が異なる結合分布を示すことを示す。
時間領域と周波数領域の両方からタイムアウェア表現を学習するために,新しいFourierナレッジアテンション機構を提案する。
自己回帰的空白埋め込み事前学習フレームワークを時系列解析に初めて組み込み、生成タスクに依存しない事前学習戦略を実現する。
論文 参考訳(メタデータ) (2025-02-05T15:20:04Z) - DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting [43.071713191702486]
DisenTSは、一般的な時系列予測において、不整合チャネル進化パターンをモデル化するための調整されたフレームワークである。
本稿では,予測器の状態と入力系列の特性の両方に応じて適応的にルーティング信号を生成する,新しいフォアキャスタ・アウェアゲート(FAG)モジュールを提案する。
論文 参考訳(メタデータ) (2024-10-30T12:46:14Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Learning Pattern-Specific Experts for Time Series Forecasting Under Patch-level Distribution Shift [30.581736814767606]
時系列予測は、過去のデータに基づいて将来の価値を予測することを目的としている。
実世界の時間はしばしば、季節、動作条件、意味的な意味など、セグメントごとに異なるパターンを持つ複雑な非一様分布を示す。
本稿では,より正確で適応可能な時系列予測のために,パターン特化の専門家を活用した新しいアーキテクチャbftextSを提案する。
論文 参考訳(メタデータ) (2024-10-13T13:35:29Z) - TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
TimeDiTは時間依存性学習と確率的サンプリングを組み合わせた拡散トランスフォーマーモデルである。
TimeDiTは、さまざまなタスクにわたるトレーニングと推論プロセスを調和させるために、統一的なマスキングメカニズムを採用している。
我々の体系的評価は、ゼロショット/ファインチューニングによる予測と計算という基本的なタスクにおいて、TimeDiTの有効性を示す。
論文 参考訳(メタデータ) (2024-09-03T22:31:57Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraosはカオス理論を長期時系列予測に取り入れている。
本研究では,AttraosがPatchTSTと比較して,パラメータの12分の1しか持たない主流データセットやカオスデータセットにおいて,LTSF法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-18T05:35:01Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
本稿では,DAG(Directed Acyclic Graph)を並列に学習する新しい手法であるCASTORを提案する。
我々は我々の枠組みの中で体制とDAGの識別可能性を確立する。
実験により、CASTORは既存の因果発見モデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2023-11-02T17:26:49Z) - Temporal-Spatial dependencies ENhanced deep learning model (TSEN) for
household leverage series forecasting [12.727583657383073]
財務時系列予測のための正確な予測モデルのための時間的・空間的パターンの解析は困難である。
深層学習の応用に触発されて,中国における家庭のレバレッジ予測の課題を解決するための新しいモデルを提案する。
その結果,新たなアプローチは家庭の時間空間的ダイナミクスをうまく捉え,より正確で確実な予測結果が得られることがわかった。
論文 参考訳(メタデータ) (2022-10-17T00:10:25Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Variational Conditional Dependence Hidden Markov Models for
Skeleton-Based Action Recognition [7.9603223299524535]
本稿では、時間変化の時間依存性パターンをキャプチャする問題に対処するために、従来の逐次モデリング手法を再検討する。
我々は、過去のフレームへの依存を動的に推定するHMMの異なる定式化を提案する。
フォワード・バックワード・アルゴリズムに基づく抽出可能な推論アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-13T23:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。