論文の概要: Quantum machine learning advantages beyond hardness of evaluation
- arxiv url: http://arxiv.org/abs/2504.15964v1
- Date: Tue, 22 Apr 2025 15:04:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 17:46:39.93641
- Title: Quantum machine learning advantages beyond hardness of evaluation
- Title(参考訳): 評価の硬さを超えた量子機械学習の利点
- Authors: Riccardo Molteni, Simon C. Marshall, Vedran Dunjko,
- Abstract要約: 量子学習の利点の最も一般的な例は、暗号や量子関数によってラベル付けされたデータである。
量子関数の場合、ランダム・ジェネラビリティは保持されないと推測され、真の量子状態において既知の識別上の利点は残されていない。
BQP が階層的でない限り、量子ラベリング関数の検証は困難であることを示す。
- 参考スコア(独自算出の注目度): 1.9662978733004604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most general examples of quantum learning advantages involve data labeled by cryptographic or intrinsically quantum functions, where classical learners are limited by the infeasibility of evaluating the labeling functions using polynomial-sized classical circuits. While broad in scope, such results reveal little about advantages arising from the learning process itself. In cryptographic settings, further insight is possible via random-generatability - the ability to classically generate labeled data - enabling hardness proofs for identification tasks, where the goal is to identify the labeling function from a dataset, even when evaluation is classically intractable. These tasks are particularly relevant in quantum contexts, including Hamiltonian learning and identifying physically meaningful order parameters. However, for quantum functions, random-generatability is conjectured not to hold, leaving no known identification advantages in genuinely quantum regimes. In this work, we give the first proofs of quantum identification learning advantages under standard complexity assumptions. We confirm that quantum-hard functions are not random-generatable unless BQP is contained in the second level of the polynomial hierarchy, ruling out cryptographic-style data generation strategies. We then introduce a new approach: we show that verifiable identification - solving the identification task for valid datasets while rejecting invalid ones - is classically hard for quantum labeling functions unless BQP is in the polynomial hierarchy. Finally, we show that, for a broad class of tasks, solving the identification problem implies verifiable identification in the polynomial hierarchy. This yields our main result: a natural class of quantum identification tasks solvable by quantum learners but hard for classical learners unless BQP is in the polynomial hierarchy.
- Abstract(参考訳): 量子学習の利点の最も一般的な例は、古典的な学習者が多項式サイズの古典回路を用いてラベル付け関数を評価する能力によって制限される暗号的または本質的に量子関数によってラベル付けされたデータである。
範囲は広いが、学習プロセス自体から生じる利点についてはほとんど明らかではない。
暗号化設定では、ランダム・ジェネラビリティ – 古典的にラベル付きデータを生成できる機能 – を使用して、データセットからラベル付け関数を識別することを目的とした識別タスクの硬さ証明を可能にする。
これらのタスクは、ハミルトニアン学習や物理的に意味のある順序パラメータの同定など、量子文脈において特に関係がある。
しかし、量子関数の場合、ランダム・ジェネラビリティは保持されないと推測され、真の量子状態において既知の識別上の利点は残されていない。
本研究は、量子識別学習の利点を、標準的な複雑性仮定の下で初めて証明するものである。
我々は、BQPが多項式階層の第2レベルに含まれない限り、量子ハード関数がランダム生成可能でないことを確認し、暗号形式のデータ生成戦略を除外する。
検証可能な識別 – 有効なデータセットの識別タスクの解決と無効なデータセットの拒否 – が、BQPが多項式階層にない限り、古典的に量子ラベル関数にとって難しいことを示します。
最後に、幅広いタスクのクラスにおいて、同定問題を解くことは、多項式階層における検証可能な識別を意味することを示す。
量子学習者によって解けるが、BQPが多項式階層にない限り古典的学習者にとって難しい量子識別タスクの自然なクラスである。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
No-Free-Lunch(NFL)定理は、最適化プロセスに関係なく問題とデータ非依存の一般化誤差を定量化する。
我々は、様々な量子学習アルゴリズムを、特定の観測可能条件下で量子力学を学習するために設計された3つの学習プロトコルに分類する。
得られたNFL定理は, CLC-LP, ReQu-LP, Qu-LPにまたがるサンプルの複雑性を2次的に低減することを示した。
この性能差は、非直交量子状態のグローバル位相に関する情報を間接的に活用するために、量子関連学習プロトコルのユニークな能力に起因している。
論文 参考訳(メタデータ) (2024-05-12T09:05:13Z) - Statistical Complexity of Quantum Learning [32.48879688084909]
本稿では,情報理論を用いた量子学習の複雑さについて概説する。
データ複雑性、コピー複雑性、モデルの複雑さに重点を置いています。
我々は、教師なし学習と教師なし学習の両方に対処することで、量子学習と古典学習の違いを強調する。
論文 参考訳(メタデータ) (2023-09-20T20:04:05Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MOREは、測定と相関に基づく変分量子多重分類器の略である。
我々はQiskit Pythonライブラリを使ってMOREを実装し、ノイズフリーとノイズの多い量子システムの両方で広範囲にわたる実験により評価する。
論文 参考訳(メタデータ) (2023-07-21T19:33:10Z) - Exponential separations between classical and quantum learners [2.209921757303168]
我々は,定義の微妙な違いが,学習者が満足して解決すべき要件や課題を著しく異なるものにする可能性について論じる。
本稿では,データ生成関数の同定に古典的困難を主眼として,2つの新たな学習分離を提案する。
論文 参考訳(メタデータ) (2023-06-28T08:55:56Z) - Classical Verification of Quantum Learning [42.362388367152256]
量子学習の古典的検証のための枠組みを開発する。
そこで我々は,新しい量子データアクセスモデルを提案し,これを"mixture-of-superpositions"量子例と呼ぶ。
この結果から,学習課題における量子データの潜在能力は無限ではないものの,古典的エージェントが活用できることが示唆された。
論文 参考訳(メタデータ) (2023-06-08T00:31:27Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
量子機械学習手法を用いて表情認識の可能な解を示す。
適切に定義された量子状態の振幅に符号化されたグラフの隣接行列を操作する量子回路を定義する。
論文 参考訳(メタデータ) (2021-02-09T13:48:00Z) - A rigorous and robust quantum speed-up in supervised machine learning [6.402634424631123]
本稿では,汎用量子学習アルゴリズムを用いて,教師付き分類のための厳密な量子スピードアップを確立する。
我々の量子分類器は、フォールトトレラント量子コンピュータを用いてカーネル関数を推定する従来のサポートベクトルマシンである。
論文 参考訳(メタデータ) (2020-10-05T17:22:22Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
量子情報処理におけるノイズは、特に短期的な量子技術において、破壊的で避け難い特徴と見なされることが多い。
量子回路の非偏極雑音を利用して分類を行うことにより、敵に縛られるロバスト性を導出できることを示す。
これは、最も一般的な敵に対して使用できる最初の量子プロトコルである。
論文 参考訳(メタデータ) (2020-03-20T17:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。