論文の概要: Building A Secure Agentic AI Application Leveraging A2A Protocol
- arxiv url: http://arxiv.org/abs/2504.16902v2
- Date: Fri, 02 May 2025 18:28:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 14:44:44.061263
- Title: Building A Secure Agentic AI Application Leveraging A2A Protocol
- Title(参考訳): A2Aプロトコルを活用するセキュアなエージェントAIアプリケーションの構築
- Authors: Idan Habler, Ken Huang, Vineeth Sai Narajala, Prashant Kulkarni,
- Abstract要約: A2Aプロトコルを中心とした総合的なセキュリティ分析を提供する。
我々は、A2Aデプロイメントにおける潜在的なセキュリティ問題を評価するために、積極的な脅威モデリングを適用する。
本稿では,A2Aプロトコルを確実に活用するために必要な知識と実践的ガイダンスを開発者やアーキテクトに提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Agentic AI systems evolve from basic workflows to complex multi agent collaboration, robust protocols such as Google's Agent2Agent (A2A) become essential enablers. To foster secure adoption and ensure the reliability of these complex interactions, understanding the secure implementation of A2A is essential. This paper addresses this goal by providing a comprehensive security analysis centered on the A2A protocol. We examine its fundamental elements and operational dynamics, situating it within the framework of agent communication development. Utilizing the MAESTRO framework, specifically designed for AI risks, we apply proactive threat modeling to assess potential security issues in A2A deployments, focusing on aspects such as Agent Card management, task execution integrity, and authentication methodologies. Based on these insights, we recommend practical secure development methodologies and architectural best practices designed to build resilient and effective A2A systems. Our analysis also explores how the synergy between A2A and the Model Context Protocol (MCP) can further enhance secure interoperability. This paper equips developers and architects with the knowledge and practical guidance needed to confidently leverage the A2A protocol for building robust and secure next generation agentic applications.
- Abstract(参考訳): Agentic AIシステムが基本的なワークフローから複雑なマルチエージェントコラボレーションへと進化するにつれて、GoogleのAgent2Agent(A2A)のような堅牢なプロトコルが必須のイネーブラーとなる。
安全な採用を促進し、これらの複雑な相互作用の信頼性を確保するためには、A2Aの安全な実装を理解することが不可欠である。
本稿では、A2Aプロトコルを中心とした包括的セキュリティ分析を提供することで、この目標に対処する。
本研究は,エージェント通信開発における基本要素と動作力学について考察する。
AIリスクに特化して設計されたMAESTROフレームワークを利用することで、エージェントカード管理、タスク実行の整合性、認証方法論といった側面に焦点を当て、A2Aデプロイメントにおける潜在的なセキュリティ問題を評価するために、プロアクティブな脅威モデリングを適用します。
これらの知見に基づいて、レジリエンスで効果的なA2Aシステムを構築するために設計された、実用的なセキュアな開発方法論とアーキテクチャベストプラクティスを推奨する。
我々の分析は、A2Aとモデルコンテキストプロトコル(MCP)の相乗効果が安全な相互運用性をさらに高める方法についても検討している。
本稿では,A2Aプロトコルを確実に活用し,堅牢でセキュアな次世代エージェントアプリケーションを構築するために必要な知識と実践的ガイダンスを開発者やアーキテクトに提供する。
関連論文リスト
- A Survey of AI Agent Protocols [35.431057321412354]
大きな言語モデル(LLM)エージェントが外部ツールやデータソースと通信する標準的な方法はありません。
この標準化されたプロトコルの欠如は、エージェントが協力したり、効果的にスケールするのを難しくする。
LLMエージェントの統一通信プロトコルは、これを変更できる。
論文 参考訳(メタデータ) (2025-04-23T14:07:26Z) - DoomArena: A framework for Testing AI Agents Against Evolving Security Threats [84.94654617852322]
本稿では,AIエージェントのセキュリティ評価フレームワークであるDoomArenaを紹介する。
プラグインフレームワークであり、現実的なエージェントフレームワークと簡単に統合できる。
モジュールであり、エージェントがデプロイされる環境の詳細から攻撃の開発を分離する。
論文 参考訳(メタデータ) (2025-04-18T20:36:10Z) - Enterprise-Grade Security for the Model Context Protocol (MCP): Frameworks and Mitigation Strategies [0.0]
Model Context Protocol (MCP) は、人工知能(AI)システムのための標準化されたフレームワークを提供する。
本稿では,エンタープライズグレードの緩和フレームワークを提供するため,MPPアーキテクチャの基礎研究と予備的セキュリティアセスメントについて述べる。
論文 参考訳(メタデータ) (2025-04-11T15:25:58Z) - Multi-Agent Security Tax: Trading Off Security and Collaboration Capabilities in Multi-Agent Systems [1.2564343689544843]
我々は、セキュリティリスクとトレードオフを研究するために、共有目的に基づいて協力するAIエージェントのシミュレーションを開発する。
我々は、悪意のある指示の多重ホップ拡散という、感染した悪意のあるプロンプトを観察する。
この結果から,マルチエージェントシステムにおけるセキュリティと協調効率のトレードオフの可能性が示唆された。
論文 参考訳(メタデータ) (2025-02-26T14:00:35Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
マルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークであるAOPを提案する。
本研究では, エージェント指向計画の3つの重要な設計原則, 可解性, 完全性, 非冗長性を明らかにする。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略と比較して,現実の問題を解決する上でのAOPの進歩を実証している。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Safeguarding AI Agents: Developing and Analyzing Safety Architectures [0.0]
本稿では,人間チームと連携するAIシステムにおける安全対策の必要性について論じる。
我々は,AIエージェントシステムにおける安全プロトコルを強化する3つのフレームワークを提案し,評価する。
これらのフレームワークはAIエージェントシステムの安全性とセキュリティを大幅に強化することができると結論付けている。
論文 参考訳(メタデータ) (2024-09-03T10:14:51Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - Security of AI Agents [5.468745160706382]
システムセキュリティの観点から、AIエージェントの潜在的な脆弱性を特定し、記述する。
本研究では,各脆弱性に対応する防御機構を設計と実験で導入し,その生存性を評価する。
本稿では、現在のAIエージェント開発におけるセキュリティ問題を文脈的に分析し、AIエージェントをより安全で信頼性の高いものにするための方法を解説する。
論文 参考訳(メタデータ) (2024-06-12T23:16:45Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。