Universal quantum control over Rydberg atoms
- URL: http://arxiv.org/abs/2504.18074v1
- Date: Fri, 25 Apr 2025 05:06:01 GMT
- Title: Universal quantum control over Rydberg atoms
- Authors: Zhu-yao Jin, Jun Jing,
- Abstract summary: In this paper, the universal quantum control with error correction is applied to the generation of the Greenberger-Horne-Zeilinger (GHZ) states of multiple Rydberg atoms.<n>A general GHZ state of $N$ Rydberg qubits can be prepared in $N-1$ steps, which is found to be robust against both environmental noises and systematic errors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, the universal quantum control with error correction is applied to the generation of the Greenberger-Horne-Zeilinger (GHZ) states of multiple Rydberg atoms, in which the qubits are encoded on the hyperfine ground levels. Our system is featured with the off-resonant driving fields rather than the strong Rydberg interaction sufficient for blockade. It can closely follow the designed nonadiabatic passage during the time evolution and avoid the unwanted transition by imposing the path-dependent and fast-varying global phase. A general GHZ state of $N$ Rydberg qubits can be prepared in $N-1$ steps, which is found to be robust against both environmental noises and systematic errors. Our protocol therefore provides an avenue towards large-scale entanglement, which is essential for quantum information and quantum computation based on neutral atoms.
Related papers
- Rapid passage to ordered states in Rydberg atom arrays [14.300711995373826]
We develop a rapid passage to ordered many-body states in a Rydberg atomic chain.
We experimentally validate the NQN scheme on the neutral-atom quantum cloud computer Aquila.
arXiv Detail & Related papers (2025-04-27T12:33:54Z) - Quantum gates between distant atoms mediated by a Rydberg excitation antiferromagnet [0.0]
We present a novel protocol for implementing quantum gates between distant atomic qubits connected by an array of neutral atoms.<n>The protocol is based on adiabatically transferring the atoms in the array to an antiferro-magnetic-like state of Rydberg excitations using chirped laser pulses.
arXiv Detail & Related papers (2024-08-21T11:44:09Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Geometric quantum gates via dark paths in Rydberg atoms [0.0]
We construct a universal set of nonadiabatic holonomic $N$-qubit gates using the Rydberg-Rydberg interaction between atoms under off-resonant driving.
Based on an effective four-level configuration in the Rydberg-atom system, the modified nonadiabatic holonomic geometric gates present a clear resilience to both systematic error and external noise.
arXiv Detail & Related papers (2023-07-14T04:21:48Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Quantum Computing with Circular Rydberg Atoms [0.0]
We propose a novel approach to Rydberg atom arrays using long-lived circular Rydberg states in optical traps.
We project that arrays of hundreds of circular Rydberg atoms with two-qubit gate errors around $10-5$ can be realized using current technology.
arXiv Detail & Related papers (2021-03-23T18:00:00Z) - Resilient quantum gates on periodically driven Rydberg atoms [10.602950162554212]
The platform of Rydberg atoms is one of the most promising candidates for achieving quantum computation.
We propose a controlled-$Z$ gate on Rydberg atoms where an amplitude-modulated field is employed to induce Rydberg antiblockade.
We generalize the gate scheme into multiqubit cases, where resilient multiqubit phase gates can be obtained in one step with an unchanged gate time as the number of qubits increases.
arXiv Detail & Related papers (2021-01-07T02:13:18Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms [1.3124513975412255]
We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with Rydberg atoms.
We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations.
Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations.
arXiv Detail & Related papers (2020-09-08T13:11:22Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.