論文の概要: Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
- arxiv url: http://arxiv.org/abs/2504.18210v1
- Date: Fri, 25 Apr 2025 09:41:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.727465
- Title: Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
- Title(参考訳): 平滑な目標密度に対する数値一般化ランダム化ハミルトンモンテカルロ
- Authors: Jimmy Huy Tran, Tore Selland Kleppe,
- Abstract要約: 不連続勾配と片方向の滑らかな目標を持つ連続密度をサンプリングする一般化ハミルトン・モンテカルロ法を提案する。
この手法は,両シナリオの不変分布として所望の目標分布を許容するGRHMCプロセスに導かれると論じられている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional gradient-based sampling methods, like standard Hamiltonian Monte Carlo, require that the desired target distribution is continuous and differentiable. This limits the types of models one can define, although the presented models capture the reality in the observations better. In this project, Generalized Randomized Hamiltonian Monte Carlo (GRHMC) processes for sampling continuous densities with discontinuous gradient and piecewise smooth targets are proposed. The methods combine the advantages of Hamiltonian Monte Carlo methods with the nature of continuous time processes in the form of piecewise deterministic Markov processes to sample from such distributions. It is argued that the techniques lead to GRHMC processes that admit the desired target distribution as the invariant distribution in both scenarios. Simulation experiments verifying this fact and several relevant real-life models are presented, including a new parameterization of the spike and slab prior for regularized linear regression that returns sparse coefficient estimates and a regime switching volatility model.
- Abstract(参考訳): 標準ハミルトニアン・モンテカルロのような従来の勾配に基づくサンプリング法は、所望の目標分布が連続かつ微分可能であることを要求している。
これは定義できるモデルのタイプを制限するが、提示されたモデルは観測における現実をよりよく捉えている。
このプロジェクトでは、不連続勾配と片方向スムーズな目標を持つ連続密度をサンプリングするための一般化ランダム化ハミルトンモンテカルロ法(GRHMC)プロセスを提案する。
この手法は、ハミルトン・モンテカルロ法と連続時間過程の性質を、そのような分布から標本化するための断片的決定論的マルコフ過程の形で組み合わせたものである。
この手法は,両シナリオの不変分布として所望の目標分布を許容するGRHMCプロセスに導かれると論じられている。
この事実を検証したシミュレーション実験と、スパース係数推定を返却する正規化線形回帰に先立ってスパイクとスラブの新たなパラメータ化と、状態変化ボラティリティモデルを含む、いくつかの関連する実生活モデルを示す。
関連論文リスト
- Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
事前学習したスコアベースモデルから得られた熱処理, 幾何平均, 製品分布の配列から, 効率的かつ原理的に抽出する方法を提供する。
本稿では,サンプリング品質を向上させるために,推論時間スケーリングを利用する逐次モンテカルロ(SMC)再サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-04T17:46:51Z) - Piecewise deterministic generative models [35.23259982653664]
部分的決定論的マルコフ過程(PDMP)に基づく生成モデルのクラスを導入する。
我々は,PDMPの条件密度に応じて,対応する時間反転のジャンプ率とカーネルが明示的な表現を認めていることを示す。
論文 参考訳(メタデータ) (2024-07-28T09:53:02Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
本研究では、円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
後部推論のために,高速ギブズサンプリングに寄与するストラトノビッチ様拡張法を導入する。
本研究では,このモデルを用いて風向予測と走行歩行周期のパーセンテージを関節角度の関数として適用する実験を行った。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Gaussian Process Regression with Soft Inequality and Monotonicity Constraints [0.0]
確率的手法で物理制約を強制する新しいGP法を提案する。
このGPモデルは量子に着想を得たハミルトンモンテカルロ(QHMC)によって訓練される
論文 参考訳(メタデータ) (2024-04-03T17:09:25Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Chebyshev Particles [0.0]
まず、対象の後方分布を無限次元ユークリッド空間におけるサンプルの写像として考える。
重み付けされたリース分極量を最大化して、ペアの相互作用により、補正可能な部分多様体を識別する新しい基準を提案する。
我々は,合成データを用いた線形状態空間モデルと実世界のデータを用いた非線形ボラティリティモデルを用いたパラメータ推論実験により,高い性能を実現した。
論文 参考訳(メタデータ) (2023-09-10T16:40:30Z) - Reverse Diffusion Monte Carlo [19.35592726471155]
逆拡散モンテカルロ(rdMC)と呼ばれる新しいモンテカルロサンプリングアルゴリズムを提案する。
rdMCはマルコフ連鎖モンテカルロ(MCMC)法とは異なる。
論文 参考訳(メタデータ) (2023-07-05T05:42:03Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
我々はメトロポリス・ハスティングス検層の自動識別アルゴリズムを開発した。
難解な対象密度に対する期待値として表現された目的に対して勾配に基づく最適化を適用する。
論文 参考訳(メタデータ) (2023-06-13T17:56:02Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Log-density gradient covariance and automatic metric tensors for Riemann
manifold Monte Carlo methods [0.0]
計量テンソルは対称正半定値対数密度共分散勾配行列から作られる。
提案手法は高度に自動化されており、問題となっているモデルに関連付けられたあらゆる空間を活用できる。
論文 参考訳(メタデータ) (2022-11-03T12:22:20Z) - Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems [26.744964200606784]
マルコフ連鎖モンテカルロ法による新しい推論アルゴリズムを提案する。
提示されたギブスサンプルは、正確な連続時間後処理から試料を効率的に得ることができる。
論文 参考訳(メタデータ) (2022-05-18T09:03:00Z) - Deterministic Gibbs Sampling via Ordinary Differential Equations [77.42706423573573]
本稿では,自律的ODEとツールを用いた決定論的測度保存ダイナミクスの一般構築について述べる。
我々は、ハイブリッドモンテカルロや他の決定論的サンプルが、我々の理論の特別な場合としてどのように従うかを示す。
論文 参考訳(メタデータ) (2021-06-18T15:36:09Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Connecting the Dots: Numerical Randomized Hamiltonian Monte Carlo with
State-Dependent Event Rates [0.0]
連続目標分布に対するマルコフ連鎖モンテカルロ法に代わる,頑健で,使いやすく,計算的に高速な手法を提案する。
提案アルゴリズムは、関連するベンチマークと比較して大きなスピードアップと安定性の向上をもたらす可能性がある。
高品質なODEコードへのアクセスが保証され、提案手法は実装も使用も容易であり、高度に困難で高次元のターゲット分布に対しても有効である。
論文 参考訳(メタデータ) (2020-05-04T06:23:13Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。