論文の概要: Predicting sampling advantage of stochastic Ising Machines for Quantum Simulations
- arxiv url: http://arxiv.org/abs/2504.18359v1
- Date: Fri, 25 Apr 2025 14:01:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.786519
- Title: Predicting sampling advantage of stochastic Ising Machines for Quantum Simulations
- Title(参考訳): 量子シミュレーションにおける確率的イジングマシンのサンプリング特性の予測
- Authors: Rutger J. L. F. Berns, Davi R. Rodrigues, Giovanni Finocchio, Johan H. Mentink,
- Abstract要約: ニューラルネットワーク量子状態(NQS)を用いた量子磁石シミュレーションにおけるsIMの計算的利点について検討する。
ソフトウェアエミュレートされたsIMのサンプリングとNQSの標準メトロポリス・ハスティングスサンプリングを比較して,NQSにおけるsIMのサンプリング性能について検討した。
量子ハイゼンベルクモデルの研究と sIM 実行時の実験結果について,100~10000 の高速化が期待できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic Ising machines, sIMs, are highly promising accelerators for optimization and sampling of computational problems that can be formulated as an Ising model. Here we investigate the computational advantage of sIM for simulations of quantum magnets with neural-network quantum states (NQS), in which the quantum many-body wave function is mapped onto an Ising model. We study the sampling performance of sIM for NQS by comparing sampling on a software-emulated sIM with standard Metropolis-Hastings sampling for NQS. We quantify the sampling efficiency by the number of steps required to reach iso-accurate stochastic estimation of the variational energy and show that this is entirely determined by the autocorrelation time of the sampling. This enables predications of sampling advantage without direct deployment on hardware. For the quantum Heisenberg models studied and experimental results on the runtime of sIMs, we project a possible speed-up of 100 to 10000, suggesting great opportunities for studying complex quantum systems at larger scales.
- Abstract(参考訳): 確率イジングマシン(Stochastic Ising Machine)は、イジングモデルとして定式化できる計算問題の最適化とサンプリングのための非常に有望な加速器である。
本稿では、量子多体波動関数をイジングモデルにマッピングしたニューラルネットワーク量子状態(NQS)を持つ量子磁石のシミュレーションにおけるsIMの計算上の利点について検討する。
ソフトウェアエミュレートされたsIMのサンプリングとNQSの標準メトロポリス・ハスティングスサンプリングを比較して,NQSにおけるsIMのサンプリング性能について検討した。
我々は, サンプリング効率を, 等精度確率推定に要するステップ数で定量化し, サンプリングの自己相関時間によって完全に決定されることを示す。
これにより、ハードウェアに直接デプロイすることなく、サンプリングの利点を予測できる。
量子ハイゼンベルクモデルの研究と実験結果について、我々は100~10000の高速化を予測し、より大規模で複雑な量子システムを研究する大きな機会を示唆する。
関連論文リスト
- Near-Term Fermionic Simulation with Subspace Noise Tailored Quantum Error Mitigation [0.0]
本稿では,SNT(Subspace Noise Tailoring)アルゴリズムを導入し,Symmetry Verification(SV)とPEC(Probabilistic Error Cancellation)QEM(Probabilistic Error Cancellation)の低バイアスを効率よく組み合わせた。
様々な局所フェルミオン-量子ビット符号化を用いて,スピン-1/2フェルミ-ハバードモデル(FHM)の時間発展をシミュレーションし,本手法の性能について検討した。
論文 参考訳(メタデータ) (2025-03-14T18:20:54Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Optimized noise-assisted simulation of the Lindblad equation with
time-dependent coefficients on a noisy quantum processor [0.6990493129893112]
ノイズは、NISQ(Noisy Intermediate-Scale Quantum)デバイス上のオープンシステムのデジタル量子シミュレーションにおける資産となる。
最適化されたデコヒーレンス率制御方式を導入し、計算要求を桁違いに削減する。
論文 参考訳(メタデータ) (2024-02-12T12:48:03Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
量子フェデレーション学習(QFL)は、量子機械学習(QML)モデルを使用して、複数のクライアント間の協調学習を容易にする。
関数の近似に時間的データを利用するQFLフレームワークの開発に前向きな作業は行われていない。
量子長短期メモリ(QLSTM)モデルと時間データを統合する新しいQFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-21T21:40:47Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
我々は、係数に応じてハミルトン式からサンプリングしてランダムな積公式を構築するqDriftプロトコルを導入する。
サンプリング段階における個別のシミュレーションコストを考慮し、同じ精度でシミュレーションコストを削減可能であることを示す。
格子核効果場理論を用いて数値シミュレーションを行った結果, 実験結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T15:06:32Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
ジャジンスキー等式から動機付けられたアルゴリズムを用いて, 有限温度可観測体がどのように得られるかを示す。
長範囲の逆場イジングモデルにおける有限温度相転移は、捕捉されたイオン量子シミュレータで特徴づけられることを示す。
論文 参考訳(メタデータ) (2022-06-03T18:00:02Z) - Benchmarking Quantum Simulators using Ergodic Quantum Dynamics [4.2392660892009255]
実験によって得られた状態と理想状態の間の忠実度を推定するために,サンプル効率のよいプロトコルを解析する。
我々は、様々な量子シミュレータプラットフォームのためのプロトコルを数値的に示す。
論文 参考訳(メタデータ) (2022-05-24T17:18:18Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
我々はQuTiPの量子情報処理パッケージであるqutip-qipに新しいツールを導入する。
これらのツールはパルスレベルで量子回路をシミュレートし、QuTiPの量子力学解法と制御最適化機能を活用する。
シミュレーションプロセッサ上で量子回路がどのようにコンパイルされ、制御パルスがターゲットハミルトニアンに作用するかを示す。
論文 参考訳(メタデータ) (2021-05-20T17:06:52Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
時間に依存しないハミルトン力学の下で自然にランダム状態アンサンブルの出現を予測し、実験的に観察する方法を示す。
観測されたランダムアンサンブルは射影測定から現れ、より大きな量子系のサブシステムの間に構築された普遍的相関に密接に関連している。
我々の研究は、量子力学におけるランダム性を理解するための意味を持ち、より広い文脈でのこの概念の適用を可能にする。
論文 参考訳(メタデータ) (2021-03-05T08:32:43Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
少数のアンシラ量子ビットを用いて環境との相互作用をシミュレートするデジタル量子アルゴリズムを開発した。
逆イジングモデルの熱状態のシミュレーションによるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-03-04T18:21:00Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
本稿では,一方のランダム化コンパイルの利点と他方の高次多重積公式を結合した量子シミュレーション手法を提案する。
本フレームワークは,振幅増幅を回避し,回路深度を低減させる。
本アルゴリズムは回路深さとともに指数関数的に縮小するシミュレーション誤差を実現する。
論文 参考訳(メタデータ) (2021-01-19T19:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。