Predicting sampling advantage of stochastic Ising Machines for Quantum Simulations
- URL: http://arxiv.org/abs/2504.18359v1
- Date: Fri, 25 Apr 2025 14:01:00 GMT
- Title: Predicting sampling advantage of stochastic Ising Machines for Quantum Simulations
- Authors: Rutger J. L. F. Berns, Davi R. Rodrigues, Giovanni Finocchio, Johan H. Mentink,
- Abstract summary: We investigate the computational advantage of sIM for simulations of quantum magnets with neural-network quantum states (NQS)<n>We study the sampling performance of sIM for NQS by comparing sampling on a software-emulated sIM with standard Metropolis-Hastings sampling for NQS.<n>For the quantum Heisenberg models studied and experimental results on the runtime of sIMs, we project a possible speed-up of 100 to 10000.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic Ising machines, sIMs, are highly promising accelerators for optimization and sampling of computational problems that can be formulated as an Ising model. Here we investigate the computational advantage of sIM for simulations of quantum magnets with neural-network quantum states (NQS), in which the quantum many-body wave function is mapped onto an Ising model. We study the sampling performance of sIM for NQS by comparing sampling on a software-emulated sIM with standard Metropolis-Hastings sampling for NQS. We quantify the sampling efficiency by the number of steps required to reach iso-accurate stochastic estimation of the variational energy and show that this is entirely determined by the autocorrelation time of the sampling. This enables predications of sampling advantage without direct deployment on hardware. For the quantum Heisenberg models studied and experimental results on the runtime of sIMs, we project a possible speed-up of 100 to 10000, suggesting great opportunities for studying complex quantum systems at larger scales.
Related papers
- Near-Term Fermionic Simulation with Subspace Noise Tailored Quantum Error Mitigation [0.0]
We introduce the Subspace Noise Tailoring (SNT) algorithm, which efficiently combines Symmetry Verification (SV) and low bias of Probabilistic Error Cancellation (PEC) QEM techniques.
We study the performance of our method by simulating the Trotterized time evolution of the spin-1/2 Fermi-Hubbard model (FHM) using a variety of local fermion-to-qubit encodings.
arXiv Detail & Related papers (2025-03-14T18:20:54Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Optimized noise-assisted simulation of the Lindblad equation with
time-dependent coefficients on a noisy quantum processor [0.6990493129893112]
Noise can be an asset in digital quantum simulations of open systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We introduce an optimized decoherence rate control scheme that can significantly reduce computational requirements by multiple orders of magnitude.
arXiv Detail & Related papers (2024-02-12T12:48:03Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Benchmarking Quantum Simulators using Ergodic Quantum Dynamics [4.2392660892009255]
We analyze a sample-efficient protocol to estimate the fidelity between an experimentally prepared state and an ideal state.
We numerically demonstrate our protocol for a variety of quantum simulator platforms.
arXiv Detail & Related papers (2022-05-24T17:18:18Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
arXiv Detail & Related papers (2021-01-19T19:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.